
-A123 636 SOFTWJARE RETEST TECHNIQUES(U) COMPUTER SCIENCES CORP- 1/2
FALLS CHURCH VA K FISCHER ET AL. OCT 82 RRDC-TR-82-275
F3@602-Si-C-8889

UNCLSSIFIED F/G 9/2 N

smmhhmmmhhhl
""III."...mo

f-A

11111 10 111.0

I i

_ r "

11111 125 1111.4 111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARD 1963-A

RADC-TR-82-275
Final Technical Report

October 1982 0 •

. SOFWARE RETEST TECHNIGUES

S A
Computer Sciences Corporation

* S

Dr. Kurt Fischer, Farzad Raji and Daniela Onaszko

* 0

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED DTICS ELECTS! 0 0

JAN 211983 J
ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, NY 13441

w

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-82-275 has been reviewed and is approved for publication. S

'-.J

APPROVED: * i Ct 4 e b

ANDREW J. CHRUSCICKI
Project Engineer

APPROVED:

J JnM J- SArM/'OHN J. MARCINIAK, Colonel, USAF
Chief, Command & Control Division

FOR THE COADA,,

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removea from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(COEE) Griffiss AFB NY 13441. This will assist us in (

maintaining a current maling list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requfres that it be returned.

al0 • " nl n I "-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("on Data Entered)

DOCUMENTATION PAGE READ INSTRUCTIONSREPORT DEBEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-82-275 3 ,p- I -3 3 _._ _-__ _

4. TITLE (Sid Subtitle) S. TYPE OF REPORT & PRLOD COVEREDFina Tecca ReporL

SOFTWARE RETEST TECHNIQUES Feb 81 - Feb 82
6. PERFORMING OIG. REPORT NUMBERN/A

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(s)
Dr. Kurt Fischer
Farzad Raji F30602-81-C-0089
Daniela Onaszko

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Computer Sciences Corporation 6276 WoRK UNIT NUMBERS

6265 Arlington Blvd 55811828FlsChurch VA 22046 •______________

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE.

Rome Air Development Center (COEE) October 1982Griffiss AFB NY 13441 ,3. NUMBER OF PAGES
144

14. MONITORING AGENCY NAME & AOORSSS(l different from Controlling Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED

ISO. DECLASSIFICATION/ DOWNGRADING

N ,iCN EDUL E

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribuiton unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Andrew J. Chruscicki (COEE)

19. KEY WORDS (Continue on reverse aide it necessary and identify by block number) -
4 Software Maintenance

Software Retest
Software Life Cycle Management
0-i Integer Programming
Graph Theory

20. ABSTRACT (Continue on reverse Side if necessary aid identify by block number)

-The purpose of this effort was to study and then develop techniques for
maintaining software systems. The report focuses on current maintenance
problems, various strategies for retesting, besides an analysis of these
strategies. A methodology for retesting was developed that generates the
minimum number of test cases to validate a code modification. To gener-
ate the minimum number of test cases the methodology analyzes the program
data and logic structure dependencies. The selected test cases assure re-

D , jAN 73 1473 EOITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Doas Entered)

UNCLASSIFIED

SECUNITY CLASSIFICA ION Or THIS PAGIE(Whan Data Entefd)

htesting of decision to decision paths (dd-paths) reaching the changed
code and setting the changed data, and reached from the changed code and
using the changed data.

-1008;selon Tor :

DTIC TAB
Unannounced Q
JustifioatlO ..

Distribution/

Availability Codes

Avail an /or
ist Special

-L

i eS

0 .0

UNCLASSIFIED
SECURITY CLASSIFICATION O

r
.,1 IAGrWh nt Datl a ntered

TABLE OF CONTENTS

Paragraph Page

Section 1 - Summary.. 1-1

Section 2 - Introduction................ 2-1

2.1 Background.. 2-1
2.2 Current State-of-the-Art of Software Maintenance 2-6w2.2.1 Management Issues.............2-8 --

6=2.2.2 Graph Theory Issues 2-12
2.2.3 Technical issues.................................. 2-16
2.3 Current Air Force Retest Practices.................. 2-19

Section 3 -Overview of Retest Strategies.................... 3-1

3 .1 1n t rod uc tion.0 .a....00000 00003-1I

3.1.1 Retest Strategy 1: Rerun All Test Cae .. 3-1
3.1.2 Retest Strategy 2: Retest All Te.stablO

Paths Through the Changed Code................. 3-2
3.1.3 Retest Strategy 3: Rerun All Test

Cases Which Execute the Changed Code ... o..... 3-3
3.1.4 Retest Strategy 4: Retest All DD-Paths

Reached From the Changed Code 3-3
3.1.5 Retest Strategy 5: Retest All DD-paths

Reaching To and Reached From the
the Changed Code 3-8

3.1.6 Retest Strategy 6: Retest All DD-paths
Reaching the Changed Code and
Setting Changed Data, and Reached
From the Changed Code and Using
C hanged Data o 3-8 -

3.2 Detailed Description of Retest Strategies o......3-12
3.2.1 Strategy 1 o.... o......... 3-14
3.2.2 Strategy 2-.................. -............ 3-14
3.2.3 Strategy 3............................ 3-14

*3.2.4 Strategy 4-.... . o............ 3-16
3.2.5 Strategy 5 3-23

*3.2.6 Strategy 6.......... o.. .. o... 3-27
3.2.6.1 Methods and Procedures.............................. 3-27
3.2.6.2 Manual Walkthrough of Set/Use Matrix................ 3-33
3.2.6.2.1 Manual Walkthrough of Algorithm A 3-34
3.2.6.2.2 Manual Walkthrough of Algorithm Bo 3-35
3.2.6.3 Live Example of Strategy 6......................... o3-36
3.2.7 System Level Analysis............................... 3-46
3.2.7.1 Global Set/Use Table 3-46 W
3.2.7.2 Usage of Example Global Set/Use Table3-4c

*Paragraph Page

*3.3 Result Obtained............................... 3-50
3.3.1 Strategy Prioritization 3-50
3.3.2 Methodology Characteristics......................... 3-54-

Section 4 -Conclusion....................................... 4-1

Section 5-Recommendations 5-

Appendix A -Data Dependency Analysis Algorithm AA-i1

Appendix B- Data Dependency Analysis Algorithm B........... B-1

Appendix C-Bibliography.................................... C-1

Appendix D Technical Paper........................... D-1

*Appendix E- Glossary.................................. E-i

Appendix F-Glossary of Terms........... 0....... F-1

*Appendix G-Glossary of Acronyms........................... G-i1U

v

0S

FIGURES

Number Page

2-1 Organizational Responsibility and Data Flow
for Retest Process 2-22

3-1 Path Enumeration Illustration 3-2
3-2 Simple Code Modification and Test Cases3-4
3-3 Flow Diagram with Test Cases 3-5 -.
3-4 Sample Flowchart 3-7

3-5 Sample Flowchart 3-10
3-6 Sample Flowchart (Strategy 6) 3-11
3-7 Sample Source Code 3-12
3-8 Sample Application Flowchart and Test Paths 3-15
3-9 Sample Retest Formulation 3-20
3-10 Sample Retest Model Formulation

After Application of Reduction Rule 1 3-22
3-11 Sample Retest Model Formulation

After Application of Reduction Rule 2 3-22
3-12 Example Formulation 3-25

3-13 Comparison of the Results of the .
Application of Strategy 4 vs. Sratetgy 5 3-28

3-14 Sample Set/Use Matrix 3-29
3-15 Example Formulation 3-31
3-16 Logical AND Operation (Step 1)3-30
3-17 Logical AND Operation (Step II).... 3-33
3-18 Logical OR Operation......................... 3-33
3-19 Example Set/Use Matrix........... 3-34
3-20 Set/Use Matrix After Applying Algorithm A.........3-34
3-21 Set/Use Matrix After Applying Algorithm B 3-35
3-22 Graph Presentation of Data Statement

Module and Identification of DD-paths 3-37
3-23 Logical AND Operation for Data

Statement Module..........................3-36
3-24 Logical AND Operation for Dat-

Statement Module 3-43
3-25 Logical OR Operation for Data

Statement Module........................ .3-43
3-26 0-1 Integer Programming Model for

Data Statement............................... 3-44

3-27 Reduced 0-1 Integer Programming
Model For Data Statement Module............... 3-45

3-28 Probability of Feasible Testcase
Selection Without Application of the
Retest Methodology For Data
Statement Mr.dule 3-48

iii

I "

FIGURES -APPENDIX D

Number Page

1 Directed Graph Presentation of a Module D-6

2 Connectivity Matrix...................... D-7

3 Reachability Matrix D0-8

4 Test Case Cross Reference Matrix............... D-

5 Module Set/Use Matrix D-9

6 0-1lInteger Programming Model............ D-9

7 Logical AND Operation.............................. D-11

*8 Logical AND Process D-12

*9 Logical OR Operation D1

*10 Global Variable Set/Use MatrixD-13

APPENDIX F

1-1 Diagram of aBranch(1) F-

w

iv

TABLES

Number Page

3-1 Retest Strategies 3-13
3-2 Sample Test Case Cross Reference Matrix 3-14
3-3 Example Test Case Cross Reference Matrix 3-21
3-4 Example Connectivity Matrix 3-21
3-5 Example Reachability Matrix 3-21
3-6 Example Test Case Cross Reference Matrix 3-26
3-7 Example Reachability Matrix 3-26
3-8 Example Test Case Cross Reference Matrix 3-32
3-9 Example Reachability Matrix 3-32
3-10 Sample Set/Use Matrix 3-32
3-11 Reachability Matrix for Data Statement Module..... 3-38
3-12 Test Case Cross Reference Matrix

For Data Statement Module 3-39
3-13 Set/Use Matrix For Data Statement Module 3-40
3-14 Set/Use Matrix For Data Statement Module

After Applying Algorithm A 3-41
3-15 Set/Use Matrix For Data Statement Module

After Applying Algorithm B 3-42
3-16 Alternative Optimum Combinations of

Test Cases For Data Statement Module
Modification 3-47

3-17 Global Variable Set/Use Matrix 3-49
3-18 Retest Strategy Priority 3-52

.1

L v
[V

[V

!V

a

- 0'

.1

* Iii

Ii

S

* 5

* W

* S

S

* SECTION 1I SUMMARY

Computer Sciences Corporation (CSC) , under contract with

Rome Air Development Center (RADC) , developed a methodology to

retest modified software during the operation and support phase

of the software acquisition life cycle. The Statement of Work

tasks and a brief summary of our accomplishments for each task

follow:.

Task 1: Investigate existing techniques and methodologies

applicable to the retesting of software during the operation

and support phase of software development. The investigation

shall include, but not be limited to, applicable technology V

which is currently being utilized in various Air Force

Operational Environments. Observed deficiencies with current

*technology shall be identified and described. Software

retesting activities to be addressed shall include those

involved with the identification of computer program components

(routines, paths, variables, etc.) affected by a specified

modification, and the subsequent application of necessary

testing technology to verify the integrity of the modified

software.

State-of-the-art techniques and software tools which are

purported to provide automated aids for program development,

debugging, testing, retesting, maintenance and documentation

* shall be examined and evaluated to determine applicability of

the techniques and the extent to which they provide retesting

*support. Applicable software tools residing in industry,

4 university, and Government environments shall be examined.

included shall be an examination of the facilities provided by

the JOVIAL J73 Automated Verification System (J73 AVS)

(Reference the Functional Description (CR-l-947) dated March

1980).

Summary of Work Performed under Task 1: Different

methodologies and techniques such as path analysis , decision

to decision path (DD-path) analysis, (see Appendix F for

definition), graph theoretic approach, and software

segmentation were investigated and the feasibility of each in

terms of applicability to Air Force software applications,

relibility, and cost-effectiveness was studied. 0

A software retest methodology was developed which considers

the impact of modifications to both the control structure as

well as the data dependency of a computer program. The retest

methodology selects the minimum number of test cases needed to

validate software modifications by applying DD-path analysis,

graph theory, and an optimization technique.

The facilities for static and dynamic analysis (e.g., path

analyses, set/use analysis) provided by the JOVIAL J73

Automated Verification System were studied and incorporated

into the functional design of the automated Software Retest

System. Additionally, various optimization techniques were

evaluated and the 0-1 integer programming package currently

available as part of the system support software at major

computer centers was selected and incorporated into the

automated Software Retest System. W

Task 2: Develop and describe advanced techniques and

methodologies which can be automated to enhance existing Air

Force software retesting capability. The retesting technology

described shall be applicable to the Air Force approved Higher

Order Languages.

The techniques and methodologies described shall be

prioritized according
to:

1. Effectiveness in supporting retesting requirements.

2. Degree of automation possible.

3. Ease of implementation.

4. Cost of implementation.

5. Cost of application (computer resources, manpower,

etc.).

6. Reliability.

1-2

Summary of Work Performed Under Task 2: Under this task,

alternative retest strategies were defined and models built for

their automated implementation. The defined strategies are:

1. Rerun all previously executed tests.

2. Retest all testable paths through the changed code.

3. Rerun all tests which execute the changed code.

4. Retest all DD-paths reachable from the changed code.

5. Retest all DD-paths reaching to and reachable from the

changed code.

6. Retest all DD-paths reaching to the changed code and

setting changed data, and reached from the changed

code and using changed data.

Though strategy 2 was shown to be impractical, techniques

were developed to implement each remaining strategy.

Implementation techniques for strategies 1 and 3 were based on

test execution history, while implementation techniques for

strategies 4 and 5 were developed using more sophisticated

techniques. For these strategies, the logical structure of the

source code was transformed into a directed graph and the graph

analyzed in terms of each strategy. For strategy 6, both the

logical and the data structure of the code were used to build

the retest model. The optimization technique of 0-1 integer

programming was then applied to minimize the amount of

retesting within the constraints inherent in each strategy.

The retest methodology and Software Retest System were

developed to be compatible with the existing Air Force software

4 packages (e.g., Jovial J73 Automated Verification System) and

High order Languages. The Software Retest System could be

implemented in any of the Air Force High Order Languages

without losing language independence in the methodology.

We have also studied the characteristics of the alternative

strategies that are relevant to the Air Force needs. These

1-3

characteristics are prioritized and presented in Section 3 of

this report.

Task 3: Techniques (described in response to Task 2, Statement

of Work Paragraph 4.1.2) which are considered cost effective

and mature enough to be implemented in future software tools

and successfully utilized in support of Air Force Operational

Software shall be formally speci~eied. A functional

description, in accordance with the CDRL, shall be prepared. -

Summary of Work Performed Under Task 3: An automated version

of the Software Retest Methodology incorporating Strategy 6 was

formally specified and a functional description was prepared.

Software Retest Project Deliverable Items

In addition to this technical report, a functional

description for the automated Software Retest System (SRS) has

been defined. Also, a technical paper was presented at the

National Telecommunication Conference '81. A copy of this

* paper is contained in Appendix D.

1-4

SECTION 2 - INTRODUCTION

2.1 BACKGROUND

Computer software is the non-hardware portion of a computer

or information system, and includes computer code

(instructions), and documentation. The development of computer

software usually goes through an evolutionary life cycle

beginning with the establishment of a user need, and ending

with the use or operation of the computer program or

information system. The individual phases of the Air Force

Software Acquisition Life Cycle follow the steps shown below:

1. Conceptual Phase - Software Requirements Analysis

2. Validation Phase - Specification Development and Study

3. Full scale Development Phase - Preliminary and

Detailed Design

4. Production Phase - Coding and Testing

5. Deployment Phase - Operations and Maintenance

The 1970's brought much progress in the fields of software

management and software engineering to many phases of the

software life cycle. The early part of the decade brought

significant increases in programmer productivity with such

techniques as structured programming, top-down development,

code walkthroughs, chief programmer teams, HIPO charts,

automated testing aids, and automated documentation aids.

These tools and techniques, though quite useful, only

concentrated on the detailed design, code, and test phases of

the software life cycle. In addition, both software customers

and vendors recognized the importance of a firm, complete, and

accurate understanding of the software requirements. Automated

tools to perform completeness and consistency checking such as

the University of Michigan's ISDOS and Ballistic Missile

Defense Advanced Technology Center's Software Requirements

2-1

U S

Engineering Methodology (SREM) are becoming more widely used in 41

both business and scientific types of applications.

The Deployment Phase (Operations and Maintenance) begins

with delivery of the first operational unit and terminates when

the system is removed from the operational inventory. Changes

to computer programs are made to remove latent errors, improve

coding or operation, adapt to changes in system requirements,

or incorporate knowledge gained from operational use.

Studying the individual life cycle phases and their

dependencies can be very important as the U.S. economy is

currently spending about $20 billion annually in the area of

computer software (2) .A small increase in productivity can be

extremely cost effective. In the past, many software projects

have taken short cuts dur-ing the early life cycle phases so

that a product could be quickly fielded. Boehm (2) has

reported that the cost of correcting an error during the design

phase is only half the cost of correcting an error during the

coding phase, and only a tenth the cost of correcting an error

found during the acceptance test phase. During the 1960's,

however, software developers paid little attention to life

cycle modeling as software customers seemed to be. more

concerned about quick delivery than error-free code.

Recent research in software management has shown the

importance of the Deployment Phase of the software life cycle.

1. Teichroew, D., "ISDOS and Recent Extensions," Proceedings

of the Symposium on Computer Software .Engineering,

* Polytcczhnic Press (1976), p. 79.

2. Boehm, B.W., "Software Engineering," IEEE Trans. on

Computers, Vol. C-25, No. 12, December 1976, pp. 1226-1242.

1P

2-2

Several authors have reported that maintenance costs account

for between 40-60% of the system life cycle cost (1,2). One

survey of predominantly business data processing managers found

that 90% of the respondents ranked maintenance of equal or

greater importance than new system design (3) . Unfortunately,

the increased importance in software maintenance has not been

accompanied by new or improved methods for performing and

managing the maintenance task.

One technical problem area, called retest, arises when

attempting to validate code modifications. Retest is the act

of testing existing software after modification. it differs

from the test activity, which is concerned with planning and

I executing tests that initially validate the entire software

system. Retest deals with the following problems:

1. How can it be shown that a change to one area of the

code does not create data and/or logic conditions that

could affect the proper execution of another area?

2. Do the previously used test cases need to be rerun?

if so, how many, and what subset?

3. Do the modifications require generation of new test

cases? If yes, how many?

The problem of what to retest and how thoroughly to do so

is a major problem for software managers and researchers and

has not yet been adequately resolved either through research or

1. Boehm, B .W., op. cit.

2. Canning, R.G., "That Maintenance Iceberg," EDP Analyzer,

Vol. 10, No. 10 (1972), pp. 1-14.

3. Lindhorst, M.W., "Scheduled Maintenance of Applications

Software," Datamation, Vol. 19, No. 5, (1973), pp. 64-67.

2-3

0 through accepted management practice. In the area of research,

no work has been published identifying a retest methodology.

In the area of management practice, retest decisions still

appear to be made ad hoc. The purist will demand that all

rpreviously executed tests be rerun. The pragmatist will leave

the decision to the discretion on the test team's technical

leader (often called the test director) as he believes the test

director knows the software best, and by using engineering

judgment and his knowledge of the code he often manually

selects the subset of previously completed tests to be rerun.

Other plausible retest methods may be: to rerun a number of

randomly selected tests, to rerun all tests that execute the

modified code, or to execute a new set of test cases (sometimes

called confidence test cases) that exercise all the program's

major capabilities to give the user "confidence' (though not

statistically) that the software operates properly.

Each method has some beneficial properties, yet none gives

a perfectly reliable solution. Rerunning all previously used

test cases is almost always impractical as the validation

process for large computer programs may take several

man-years. The test director may be able to select for retest
those tests that addreszs: the functional modifications, but he

may not be aware that modified data conditions could cause

* execution of non-functional paths resulting in inaccurate

output that may go undetected for years. What is needed is a 4

quantitative method for assuring that new program modifications

are correct and do not introduce new errors into the code. To

formally prove this would take an analysis of every program

path, but this has been shown to be an impractical task in all

but the most trivial cases (1).

*1. Boehm, B.W., "Software and Its Impact: A Quantitative

Assessment," Datamation, Vol. 19, No. 5 (1973), pp. 48-59.

2-4

* The research explored during this project addressed the

validation of software modifications. The general question

was, "How can software modifications be validated?", and more

specifically:

C1. What quantitative techniques can be used to implement

these strategies?

2. Are these techniques feasible?

03. What are the implementation considerations?

These questions are critical to software practitioners, because

the ad hoc retest selection teconiques of the past have proved

woefully inadequate. --

Choosing a subset of test cases to be rerun can be done

using either quantitative or ad hoc techniques. No other known

studies have comprehensively addressed either method, though in

E practice, the latter is most often employed. The approach
taken during this project was to apply graph theory to the

analysis of software modifications. This approach has been

successful in the area of initial software testing and was

extended here to analyze the retest problem. V

The goal of this research was to find methods to perform

*retesting in the most efficient and reliable way. With this

* methodology, we hoped to be able to answer questions such as:

1. "What parts of the software system need to be retested

after modification?"

2. "How much retesting is needed?"

3. "What are the most efficient methods of retesting?" - '

4. "What test cases need to be rerun?"

The first step in the research was to define alternative

retest strategies which assure specific retest coverage.

Conclusions were drawn based on the performance of each

strategy and generalized beyond the research environment.

2-5

* Developments in the retest area will advance computer

software theory as well as benefit the management of the

software maintenance process. The current graph theoretic

approach to computer program testing will be extended to

computer program maintenance. Practical benefits are

anticipated to be significant because now maintainers will have

a tool with which to make tradeoff analyses with regard to cost

versus test coverage. In addition, managers will be able to

have increased confidence that modifications to one module do -.

not affect the proper execution of the entire software system.

2.2 CURRENT STATE-OF-THE-ART OF SOFTWARE MAINTENANCE

The maintenance effort for many software systems today runs

from 40-60 percent of the system life cycle cost (1,2).

Canning's studies of B. F. Goodrich and General Motors (2) show

the need for an increase of maintenance in the data processing

environment. Canning's report estimates that up to 80 percent

of the effort at Oldsmobile is maintenance. The Boehm (3)

report on two Air Force Command and Control projects indicates

the maintenance portion of the 10 years life cycle cost is

about 67-72 percent. In a recent report to Congress, it was

estimated that the Government spends 1.3 billion dollars on

software maintenance. Not included in this estimate is

1. Boehm, B.W., "Software and Its Impact: A Quantitative S

Assessment," op. cit.

2. Canning, R.G., op. cit.

3. Boehm B.W., "Software Engineering," op. cit.

2-6

the software maintenance cost associated with embedded weapons 4

systems (1).

The need for software modification during the operations

and maintenance phase of the software life cycle is unavoidable

and the retesting of these modifications is essential.

Unfortunately, there are few tools available to assist software

maintenance personnel in determining the proper retesting

procedures. This is not for lack of need, however. Boehm (2)

and Lipow (3) discuss the uncertain reliability of software

subsequent to maintenance modifications. Gibson and Railing

(4), Donahoo and Swearingen (5), Yau and Collofello (6),

1. Report to the Congress of the United States, "Federal

Agencies' Maintenance of Computer Program: Expensive and

Undermanaged", February of 1981.

V

2. Boehm B.W., "Software Engineering," op. cit.

3. Lipow, M., "Some Directed Graph Methods for Analyzing

Computer Program," Proceedings, Computer Sciences and

Statistics: Eighth Annual Symposium on the Interface,

Health Sciences Computing Facility, UCLA, February 1975.

4. Gibson, C.G. and L.R. Railing, "Verification Guidelines,"

TRW Software Series #71-04, August 1971.

5. Donahoo, J. D. and D. Swearingen, A Review of Software

Maintenance Technology, RADC-TR-80-13, Rome Air Development S

Center, Griffiss AFB, NY, February 1980.

6. Yau, S.S. and J. Collofello, "Some Stability Measures for

Software Maintenance," IEEE Transaction Software W

Engineering, Vol. SE-6, No. 6, November 1980.

2-7

and Liu (1) specifically identify the need for developing a

formal quantitative maintenance validation procedure.

* Three areas of software maintenance and retesting were

reviewed and significant findings in each area are discussed in

this section. The management procedures for software

maintenance and the need for software retesting tools and

technology is discussed in 2.2.1. Utilization of graph theory

* as a solution to retesting problems is discussed in 2.2.2, and

difficulties involved with software maintenance and retesting

are identified in 2.2.3.

*These areas provided sufficient information for the

development of our retest methodology.

2.2.1 Management Issues

For better employee morale and more efficient maintenance,

Lindhorst (2) suggests a "scheduled maintenance" approach for

maintenance of application software. Scheduled maintenance is

a policy whereby maintenance is deferred until a predetermined

month when all maintenance modifications for an application are

performed. The article attributes the following benefits to

the utilization of this approach:

1. Consolidation of requests.

2. Programmer job enrichment.

3. Better user analysis prior to the request for

mod ification.

4. Periodic application program evaluation.

*5. Elimination of "squeaky wheel syndrome".

1. Liu, C.C., "A Look at Software Maintenance," Datamation,

Vol. 22, No. 11, (1976) , pp. 51-55.

2. Lindhorst, M.W., op. cit.

2-8

6. Programmer back-up.

7. Better planning.

Mooney (1) suggests "organized program maintenance" to

produce more efficient and reliable software modificationis.

The organized program maintenance approach suggests that

motivational factors such as increased salaries and rotation to

a software development team after 6 months will significantly

increase the productivity and morale of a maintenance team.

Swanson (2) categorizes the failure of software into three

*types: process failure, performance failure, and

implementation failure. Based on this categorization, he

suggests an "organizational structure" approach to software
maintenance. This approach uses a team of programmers whose

* only responsibility is the maintenance of installed software.

The team uses a maintenance data base and every change must be

*made through a maintenance order. Swanson believes that

utilization of these tools, will result in better software

maintenance management and less software failure.

Boehm (3) categorizes software modifications during

maintenance into: software updates which results in a change

of specification, and software repair which does not affect the

software specification.

1. Mooney, J.W., "Organized Program Maintenance," Datamation,

Vol. 21, No. 2 (1975) , pp. 63-64.

2. Swanson, E.B., "The Dimensions of Maintenance,"

Proceedings, Second International Conference on Software

Engineering, IEEE Catalog 76CH1125-4C, October 1976, pp.

492-497.

3. Boehm, B.W., "Software Engineering," op. cit.

2-9

Managing software maintenance has problems similar tov-

managing any other activity. Ignoring the problems leads to

poor software maintenance and software process failure thereby

increasing the cost of maintenance. Boehm (1) enumerates

software management problems as follows:-

1. Poor planning.

2. Poor control.

3. Poor resource estimation. 46

4. Unsuitable management personnel.

5. Poor accountability structure.

6. Inappropriate success criteria.

7. Procrastination on key activities.

To overcome these problems, he states that the manager of a

software maintenance activity must keep the maintenance team ,
current with state-of-the-art technology, especially in the

area of software tools. Such tools could be an automated

software retest system similar to the one described in the

"Software Retest System Functional Description" that can

increase the reliability of modified or repaired software and

decrease failures.

Yau and Collofello (2) discuss software maintenance for

large-scale software. They break down the software maintenance

modification process into different phases and steps. Their

defined maintenance process is a set of phases; each phase and

* its associated process is critical to the maintenance process.

4 Before beginning a phase and making any modifications, their

maintenance process requires that maintenance objectives be

1. Boehm, B.W., "Software Engineering," op. cit.

2. Yau, 5.5. and J. Collofello, "Some Stability measures for

Software Maintenance," IEEE Transaction Software

Engineering, Vol. SE-6, No. 6, November 1980.

2-10

* determined so that maintenance personnel understand what to

modify. The "maintenance process" phases are:

Phase 1- Understanding the program with regard to the program's

complexity and self descriptiveness. The complexity

of a program is a measure of the effort required to

understand the program. Self descriptiveness of the

program is a measure of the clarity of the program.

Phase 2- Generating a particular maintenance proposal, keeping -6

in mind extensibility, which is a measure of the

extent to which a program can support extensions or

critical functions.

Phase 3- Accounting for ripple effect since the affect of a

modification may not only be local to the

modification, but may also affect other portions of

the program.

Phase 4- Testing to assure the modified program has at least

the same reliability as it had prior to modification.

Once Phase 4 is completed, Yau and Collofello

recommend determining the success of retesting

effort. If it is determined to be unsuccessful, the

maintenance modification objectives must beI

reevaluated and the maintenance process repeated.

One of the most critical and neglected aspects of software

maintenance and development is the human factor. This phase of

the software life cycle needs experts that can quickly

understand existing software and that can rapidly modify

software. Unfortunately, software maintenance is not viewed as 0

the most exciting portion of the software life cycle and

frequently software maintenance personnel experience boredom

with their jobs. Mooney (1) experienced this problem and his

solution was to rotate personnel between a development team and

a maintenance team. Additionally, a pay increase for

1. Mooney, J.W., op. cit.

2-11

4 maintenance team members was provided. This method

significantly increased job satisfaction.

Shneiderman (1) considers the working environment as the

major factor influencing the behavior of programmers and

maintainers. The physical environmental factors found to be

the most significant are:

1. Room size.

2. Room structure (window, door, ceiling, etc.).

3. Brightness of the light.

4. Air temperature and humidity.

q 5. Arrangement of desk and work space.

6. Ac,.cess to computer terminal and facilities.

7. Noise quality and intensity.

* 8. Interference from others.

9. Degree of privacy.

He concluded that a poor working environment decreases the

quality and quantity of the programmer/designer's work.

2.2.2 Graph Theory Issues

Graph theory has played a heavy role in two very

specialized areas of software testing: logic path generation,

and program structure analysis. The identification of logic

paths is used by those who have built automatic test data

generator programs. These programs have discovered some well

hidden errors. Hoffman (2) discusses his experience with the

1. Schneiderman, B., op. cit.

*2. Hoffman, R. H., "The impossible Pairs Detection Capability

(IMPAIR) of the Automated Test Data Generator (ATDG) ,"

NASA, Contract No. NAS9-.14853, Houston, Texas, January 14,

1977.

2-12

* Impossible Transfer Pairs Detection Capability, (IMPAIR). This
system was tested with his Automatic Test Data Generator
program and as a result of running 15 test cases, two function
errors were found and four system modifications had to be

made. Other researchers, such as Fosdick and Osterweil (1) ,
have developed static analysis programs which analyze logic
paths to assure data consistency and software reliability.
Shooman and Ruston (2) propose an "analytical determination of
program paths." They present an algorithm based on labeling
branches of a program with a binary number that identifies the
number of possible paths in a program. As a result, each path
is a combination of branches with a unique binary number.

S
Graph theory is also utilized in the area of program

structure analysis. By using graph theory, it is possible to
determine the degree to which a program complies with various
coding constructs. Brown and Fischer (3) introduce a technique
called "segmentation" which involves analysis of program source
code. Based on an algorithm, a tool was developed to audit

source code for compliance with structured programming

1. Fosdick, L.D. and L.J. Osterweil, "DAVE - A Fortran Program
Analysis System," Proceedinqs, Computer Science and
Statistics: Eighth Annual Symposium on the Interface,
Health Sciences Computing Facility, UCLA, February 1975,
pp. 329-335.

2. Shooman, M.L. and H. Ruston, "Summary of Technical Progress
Investigation of Software Models," Rome Air Development 0
Center, RADC-TR-79-188, Griffiss AFB, NY.

3. Brown, J.R. and K.F. Fischer, "A Graph Theoretic Approach
to the Verification of Program Structures," Proceedings,
Third International Conference on Software Engineering,
IEEE Catalog No. 78CH1317-7C, May 1978.

2-13

constructs. Gannon and Else (1) discuss the utilization of

program branches (DD-paths) in computer program analysis.

There is other research that discuss graph theoretic

approaches to program testing. Krause, Smith, and Goodwin (2)

give an introduction on the use of graph theory in testing, and

discuss a method of designing test cases to exercise all of the

code using source code analysis, base path and loop generation,

optimal path design, and user interface.

Huang (3) gives an excellent tutorial on program testing

from a graph theoretic viewpoint. Lipow (4) discusses a graph

theoretic approach to testing by using Dilworth's theorem on

partially ordered sets to determine the minimum number of

testcases needed to execute all segments of a computer program

at least once. Miller (5) identifies three major categories

for program testing technology: theoretical functions,

methodology, and automated tools. Additionally, he identifies

over twenty program testing "needs" from a graph theory

1. Gannon, C. and R. F. Else, "JOVIAL J73 Automated

Verification System User's Manual," General Research

Corporation, July 1981.

2. Krause, K.W., R.W. Smith and M.A. Goodwin, "Optimal

Software Test Planning Through Automated Network Analysis," S

Record, 1973, IEEE Symposium on Computer Software

Reliability, New York, 1973, pp. 18-22.

3. Huang, J.C., "An Approach to Program Testing," Computing 0

Surveys, Vol. 7, No. 3 (1975), pp. 113-128.

4. Lipow, M., op. cit.

5. Miller, R.E., "Program Testing Technology in 1980's,"

Proceedings of the Conference on Computing in the 1980's,

IEEE, 1978.

2

2-] 4

viewpoint and describes each one in detail. Gannon (1)

conducted an experiment in which she compared two software

testing techniques: static analysis and dynamic path testing.

Both tools ran in a similar environment. The result indicates

that between the two testing techniques, dynamic path testing

is the most effective at detecting logic, computational, and

data base errors. In this experiment, dynamic path testing

detected 25 percent of the seeded errors.

Voges, Gmeiner and Amschler (2) designed and implemented an

automated testing tool capable of testing a single FORTRAN

module. This tool views the module as a directed graph and

generates test cases which require at least one execution of

each DD-path. Ntafos and Hakimi (3) introduces algorithms for

covering a minimum set of paths during program testing. Paige

(4) views the computer program as a graph structure and

discusses different approaches to partitioning program graphs.

1. Gannon, C. , "Error Detection Using Path Testing and

Statistic Analysis," IEEE Transactions on Computer,

August, 1979. g

2. Voges, U., Gmeiner, and Amscher, "SADAT, an Automated

Testing Tool", IEEE Transaction on Software Engineering,

Vol. SE-6, No. 3, May 1980, pp. 286-290.

3. Ntafos, S.C. and S.L. Hakimi, "On Path Problems in

Diagraphs and Application to Program Testing; IEEE

Transaction on Software Engineering, Vol. SE5, No. 5,

September 1979.

4. Paige, M.R. "On Partitioning Program Graph", IEEE

Transaction on Software Engineering, Vol SE-3, No. 6,

November 1977.

2-15

4 Sloane (1) presents an algorithm for f inding the paths through

a network which could be applied to computer programs. Fischer

(2) used a graph theoretic approach to determine the minimum

number of previously executed test cases needed to retest every

reachable program segment subsequent to code modification.-0

2.2.3 Technical Issues

As previously discussed, between 40 and 60 percent of the

system life cycle is spent on maintenance. The major technical

problems involved in computer program maintenance concern the

lack of software tools for maintenance, the focus of software

research, and the reliability of software modifications.

To effectively and efficiently perform the maintenance

task, tools are needed. Unfortunately, however, most of the

available tools were developed for use during software

production, not maintenance. Moreover, our literature review
and on-site surveys performed as part of this effort, indicate

that few tools are procured by organizations responsible for

software maintenai ce.

Another technical problem which affects software

maintenance is the direction and focus of research. Boehm (3)

has defined the following categories in which maintenance

research should be targeted:

1. Understanding the existing software.

1. Sloan, N.J.A., "on Finding the Paths Through a Network,"

The Bell System Technical Journal, Vol. 51, No. 2 (1972) ,

* pp. 371-390. *

*2. Fischer, K. F., "A Test Case Selection Method for the

Validation of Software Maintenance Modifications,"I

g Proceedings, COMPSAC '77, IEEE, November 1977, pp. 421-426.

3. Boehm, B.W., "Software Engineering," op. cit.

2-16

* 2. Modifying the existing software.

3. Reevaluating the modified software.

4. General aids.

The reliability of post-modified software has long been a

technical issue among software maintainers. The prevailing

assumption is that the reliability of the software is directly

associated with the reliability of the testing. Tai (1)

analyzes the complexity of programs and measures that

complexity by the amount of test data required for

demonstrating program correctness by testing. Based on this

complexity measurement, he introduces new test selection

criteria. To select test data, Howden (2) compares five

methods of software testing with the following results:

Method Errors Found in the Same Program

Path 18

Branch 6

Structured 12

Special Value 17

Symbolic 17

Fischer (3) proposed the use of "quality assurance software

tools". This is a useful technique to increase the reliability

1. Tai, K., "Program Testing Complexity and Test Criteria,"

IEEE Transaction on Software Engineering, Vol. SE-6, No. 6,

November 1980.

2. Howden, W.E., "Methodology for the Generation of Program

Test Data," IEEE Transaction on Computers, Vol. C-24, No. 5

(1975) , pp. 554-559.

3. Fischer, K. F., The FORTRAN Code Auditor, Quality Assurance

Software Tools User's Guide, TRW Software Product

Assurance, STP-6039, January 1977.

2-17

4 of the software, by using tools such as code auditors, path0

analyzers, variable analyzers, etc.

Changing software during maintenance raises the question,

"Is the performance of the software changed?" The answer can

be found in a ripple effect analysis study performed by Yau and

Collofello (1). The first part of the study identifies program

areas which require additional maintenance to insure

consistency with the initial change. The second part of the

-J study analyzes how changes to one program area affects the

performance of other program areas. Ripple effect analysis is

performed in three steps:

q1. Change management system.

In this step, maintenance personnel provide the system

with source code, a proposed modification, and

performance requirements. The system creates a record

* of changes in a data base.

2. Lexical analysis package.

This step is performed once the modification to the

program has been completed. The program is analyzed

with respect to the proposed modification and a

characterization of the program containing information

necessary for tracing both logical and performance

ripple effects is compiled and saved in a data base.

3. Tracing package.

In this step, maintenance personnel execute the

tracing package which utilizes the data base of

program changes created by the change management

system and maps these changes i nto the

characterization of the program created by the

previous step.

1. Yau, S.S. and J.S. Colofello, op. cit.

2-18

2.3 Current Air Force Retest Practices -

As part of the "Software Retest Techniques" contract,

on-site interviews were conducted to determine retesting

practices currently being used by the Air Force. Four programs

17 were selected for participation:

1. Short Range Attack Missile Program, Oklahoma Air

Logistics Center.

2. 427M System, North American Air Defence Command, Space

Computation Center.

3. F-ill operational Flight Program, Sacramento Air

Logistics Center.

4. Communication Software, Oklahoma Air Logistics Center.

Based on these interviews, 3 retest practices were

identified:

*1. Selection of test cases to validate modifications to

software were made by the staff based on their

knowledge and familiarity with the software.

2. Manual techniques were used to select testcases.

3. One large test case was used to validate all

modifications to the software.

Each practice offers some beneficial properties, yet none

V provide a reliable, cost-effective solution.

In the first practice, the selection of test cases to

validate a software modification is made subjectively by

personnel based on their knowledge of the software and the test
4 bed. Given that such personnel are available, they may be able

to select those test cases that address functional

modifications. However, wi'chout extensive knowledge of the

software, they may be unable to select test cases that addressW

2-19

6 data conditions that can cause execution of non-functional

paths. The execution of non-functional paths leads to

inaccurate output which decreases system reliability.

Furthermore, since retest decisions are made subjectively,

statistical confidence that the software operates properly can

not be given. A software program utilizing this retest

approach will be only as reliable as the personnel responsible

for making retest decisions.

In the second practice, the selection of test cases to

validate software modifications is made without the benefits

derived from the utilization of automated support tools.

Therefore, the inputs (analysis of data and logic dependencies)

*used to select test cases are developed manually. Since the

inputs are generated manually a greater probability of error is

introduced. Additionally, the cost and time of manually

generating inputs is greater than the automated generation of 0
inputs.

In the third practice, one large test case is used to

validate modifications made to the software. This large test

case is developed to exercise the entire system baseline, not

just the modified portion of the baseline. The major concern

with this practice involves the manpower and computer costs

* associated with testing those portions of the baseline that

need not be tested as thoroughly as the modified areas of the

baseline. Additionally, since it is not feasible to retest

each modification, a modification cycle is frequently used.

* For example, during an 18-month modification cycle, severa'-

umodifications may need to be made to the software. if the need

for a modification is identified during month 1 of the cycle,

it will not be implemented or tested until month 18. The time

lag associated with such a modification cycle may be

S unacceptable as well as frustrating to users.

2-20

* The organizational responsibilities and the data flow for
the retest process are shown in Figure 2-1. As indicated, a
review board or configuration management office has approval
authority for the modification and its validation (retest)
while the software support group performs the actual
modification and retest.

2-21S

-

S/W SUPPORT REVIEW BOARD SUOFWRT
FINDS A GRANTS SUXESAND

PROBEM ITHAUTHORITY TO RETESTS THETHESOFTWARE FIX THE SOFTWARE SOFTWARE

SOFTWARE RVE OR
SUPPORT REVIEW____BOARD_

MAKES A APPROVESTHE
NEW LIBRARY"FX

Figure 2-1. Organizational Responsibilities and Data Flow

for the Retest Process
2 -

t -2-22

; .]!

* SECTION 3 -OVERVIEW OF RETEST STRATEGIES

3.1 INTRODUCTION

Approaches to retesting, and the degree to which it is

performed will vary widely depending on the goals and

constraints on a given software maintenance environment.

Managers usually have good intentions, but there are no widely

accepted retest standards or methodologies. Retest strategies

typically amount to a shotgun approach of performing as much

retesting as possible within set schedule and cost constraints.

This section describes six alternative retest strategies

which explicitly define the amount of retesting to be performed

for any given code change. Examples using the selected

strategies are given along with algorithms for their

implementation.

3.1.1 Retest Strategy 1: Rerun All Test Cases

In terms of selection effort, the easiest retest strategy

is to rerun all previously used test cases. In the extreme

best-case, the set of previously executed test cases provides

full test coverage of existing capability. If the test bed

executes all DD-paths, then this strategy will usually provide

an overkill of the effort required to validate small software

modifications. While this strategy may be convenient for small

programs where the number of test cases is low, it may not be

feasible for medium to large systems where the number of test

cases is high. Even if the number of test cases is low,

* rerunning all test cases will not guarantee software quality

unless in the aggregate the test cases provide full test

coverage. In a large software system where the number of test

cases may exceed one thousand, it is too time consuming and

expensive to rerun all test cases. Additionally, the set of

previously executed test cases may not functionally or

structurally test that code introduced as a result of the

modification. Consequently, system reliability steadily

decreases unbeknown to the software support group.

3-1

W

3.1.2 Retest Strategy_ 2: Retest All Testable Paths Through

the Changed Code

This strategy implies that one has identified and developed

test cases for each testable path. While it is possible to

*identify the set of all paths using a graph (1), the number of

paths through software containing loops may be very high,

*making it impractical to develop test cases for each path. To

illustrate the large number of paths in a relatively simple

graph, consider the example illustrated in Figure 3-1. if all

LOOP.

Figure 3-1. Path Enumeration Illustration.

1. Sloan, N.J.A., "on Finding the Paths Through a Network,"

The Bell System Technical Journal, Vol. 51, No. 2 (1972) ,

pp. 371-390.

3-2

*the branches are assumed to be independent there are

68,719,476,736 (calculated as 2 10 2 26) paths in the
graph. Even though all decision statements are seldom mutually

independent, the number of testable paths is usually too high

to consider building test cases for each. Therefore, this

retest strategy was dropped from consideration because its

implementation is currently infeasible.

3.1.3 Retest Strategy 3: Rerun All Test Cases Which Execute

the Changed Code

Clearly, if a test case does not exercise the modified

code, it is not impacted and need not be rerun. This strategy

confines retesting to only those test cases that execute the

modified code. For example, if there are four test cases to

test the code represented in Figure 3-2, and DO-path 3 is

modified, one can visually verify that test cases 1 and 2 need

not be retested as they do not execute DO-path 3. In this

*example, only test cases 3 and 4 need be rerun. Implementing

this strategy would reduce the required retesting by 50 percent

for this particular example.

Though rerunning all tests which pass through the modified

code provides high test coverage, it may also require more

retesting than either the budget or schedule will allow.

Consider the example depicted in Figure 3-3. Using the

strategy of rerunning all test cases that execute the

modification, a simple code modification to OD-path 3 would

require rerunning 8 of the 12 possible test cases. For this

example, two-thirds of the testbed would have to be rerun in

order to validate a simple modification.

3.1.4 Retest _Strateqy -- 4: Retest All DO-Paths Reached From

the Changed Code

Seven software entities (see Appendix F for definitions)

O identified with code are:

1. Programs

2. Modules

3-3

2 3*

TETCS DO-PATH

EXERCISE

DO-PATH I DO-PATH

4 5

3-4.

DD-PATH

I DD-PATH

I DD-PATH1

DO-PATHS DD-PATH DD-PATH
TEST CASE EXERCISED 5 6

1 1,2,5
2 1,3,5
3 1,2,6
4 1,3,6
5 1,2,4,2,6
6 1,2,4,2,5
7 1,2,4,3,6
8 1,2,4,3,5
9 1,3,4,2,6

10 1,3,4,2,5 q11 1,3,4,3,6
12 1,3,4,3,5

Figure 3-3. Flow Diagram With Test Cases

3-5

3. DD-paths

4. Segments

5. Statements

6. Branches

7. Paths

Merely entering and exiting the program (entity 1) does not

provide sufficient retesting. On the other hand, sufficient

resources to test every path (entity 7) may not be available

and. as demonstrated in paragraph 3.1.2, is highly impractical

if not an impossible task. We then search for a middle ground

of software entities to sufficiently test. We know that we

would like to test all branches and statements. The technique

of breaking a computer program down into DD-paths allows for

consideration of all branches and statements in a more

manageable way. Therefore, it may be concluded that a

reasonable retest strategy is to execute all DD-paths at 1.east

once. However, if this strategy is examined for efficiency, we

find that it can be improved. For example, if a simple

modification to DD-path 5 (in Figure 3-3) is made, it seems

inefficient to retest DD-path 6 since the execution of DD-path

5 has no impact on DD-path 6. A better retest strategy would

be to retest a subset of the testbed which covers all DD-paths

that are reached from the modified code. This strategy

incorporates the benefits of full test coverage, but eliminates

retesting DD-paths that cannot be reached from the modified

code. The minimum retest subset would then be any set of test

cases such that all DD-paths are tested.

Though testing all DD-paths that are reached from the

modified code is necessary, it can also miss important

potential error conditions. In the example shown in Figure

3-4, assume that the assignment statement in DD-path 3 was l

changed from Y=Z*X to Y=Z/X. By retesting only those DD-paths

reached from the modified code (Strategy 4), only a single test

3-6

case need be rerun, i.e., a test that executes DD-path 3.

However, it can be seen that a fatal error occurs depending on

which path was taken before the modified code. If the path

containing DD-path 1 was traversed, execution continues

normally. However, if the path containing DD-path 2 was

executed, then a fatal error occurs at the modified DD-path

because of division by zero.

DD-PATH DD-PATH2 X= 0 X=Z1

DO-PATH J FROM: DO-PATH

I DO-PATHS
I I TEST CASE EXERCISED

I1 1,3
_2 2,3

3 1,42,4
4 2A4

Figure 3-4. Sample Flowchart

3-7

W

3.1.5 Retest Strategy 5: Retest All DO-paths Reaching To

and Reached From the Changed Code

The limitations of strategy 4 suggest the more powerful

strategy of retesting all DO-paths reaching to and reachable

from the modified code. In the example depicted in Figure 3-4,

this would require that at least two testcases be rerun: one

executing the DO-path sequence 1-3, and the other executing the

DO-path sequence 2-3. This strategy, though always requiring

an amount of retesting greater than or equal to that required

by strategy 4, is apt to detect more errors than the strategy

of retesting only those DO-paths reached from the modified code.

3.1.6 Retest Strateg 6: Retest All DD-paths Reaching the S

Changed Code and Setting Changed Data, and Reached

From the Changed Code and Using Changed Data

The previous five retest strategies considered only a

program's control structure when determining a retest subset.

Another important element is a program's data dependency

structure. The data dependency structure of a program

describes the logical relationship among data elements.

Important in a discussion of data dependency are the

concepts of setting data and using data. Setting a data value

means to assign (or reassign) a value to that data's storage

location. For example, the variable X is being set in the

FORTRAN assignment shown below:

X=Y*2

Using a data value means to access a data item's storage

* location and utilize its value in comparing or computing some

other value. The variable Y is being used in the FORTRAN

statement shown below:

X=Y*2

3-8

S lUf

It is also possible for a data value to be both set and S

used in the same statement. The FORTRAN assignment statement

shown below is one such example:

X=X+l O

The concept of data dependency is important to the retest

problem because studying a program's data logic as well as its

control logic can eliminate much unnecessary testing. The

example in Figure 3-5 shows how considering data logic can -0

eliminate some of what the previous retest strategies would

consider mandatory testing. For this example, assume that a

constant is changed in DD-path 2 from one value to another.

Clearly, this change impacts the assigned value Y, and the S

effects of this change should be evaluated throughout the

program. Using control structure alone, as in strategies 4 and
5, a test case exercising DD-path 3 and a test case exercising
DD-path 4 would be selected for retest. Introducing data S

dependency eliminates the need for retesting a test case

exercising DD-path 4 because although control can transfer from

DD-path 2 to DD-path 4, the data generated in DD-path 2 is not

used in DD-path 4. Since DD-path 4 is not impacted, a test 6

case exercising DD-path 4 would not be selected for retest.

This example indicates that the minimal retest set satisfying

strategy 6 will always be a subset of the minimal retest set

satisfying strategy 5.

In addition to retesting test cases containing DD-paths

which use variables set in the modified code, it may also be

desirable to retest test cases containing DD-paths which

transfer to the modified code. However, retesting test cases
containing DD-paths that transfer to the modified code may be

testing more than is necessary. The example in Figure 3-6
illustrates this point. Without considering data flow,

strategy 5 would have dictated that a test case exercising

3-9

K=*

I DD-PATH

11 1

qq

RI
I3 1

1 21

DD-PATH FROM DD-PATH

1 1,

4 2,

3-1

* DD-path 1 and a test case exercising DD-path 2 be selected for

retested. Since the value of X (DD-path 1) has no impact on

the execution of the modified DD-path 3, a test case exercising

DD-path 1 need not be selected for retest.

The previous analysis considered only data dependency of

the first order. The order of data dependency refers to the

dependency of one variable upon another. In Figure 3-7, the

first order data dependency would show that variable E is an

input to (or is used in) statement 50. The second order data

dependency would show that variables C, D, and E are input to

statement 50 (since D and C set E) , and the third order data

dependency would show that variables A, B, C, D, and E are

input to statement 50. A complete effect of all orders of data

dependency is called the n th order dependency. Algorithms

which determine these dependencies are described in paragraphs

3.2.6.1 and 3.2.6.2.

10 INPUT A,B

20 C=A+S

30 D=B*2

40 E=D-C

50 F=E+2

Figure 3-7. Sample Source Code

3.2 DETAILED DESCRIPTION OF RETEST STRATEGIES

This section identifies the procedures and mathematical

methods necessary to implement the six retest strategies. 0

These strategies are listed numerically in Table 3-1 and will

be referred to by number instead of by name throughout this

section.

3-12

0J

-
61

Table 3-1. Retest Strategies

1. Rerun all test cases.

2. Retest all testable paths through the changed code. -

3. Rerun all test cases that execute the changed code.

4. Retest all DD-paths reached from the changed code.

5. Retest all DD-paths reaching to and reached from the
changed code.

6. Retest all DD-paths reaching the changed code and

setting changed data, and reached from the changed

code and using changed data.

3

3-13

3.2.1 Strategy 1 4

When using the retest strategy of rerunning all test cases,

the selection process is trivial. one merely reruns all test

cases that were executed during program validation and compares

their output with the system software specification.

3.2.2 Strategy 2

Because a program may contain an extremely large number of

paths, strategy 2 (as described in paragraph 3.1.2) , was

* dropped from consideration as a viable retest strategy.

Therefore, procedures for its implementation are not described.

3.2.3 Strategy 3

Before identifying selection methods for strategy 3, it is

necessary to introduce the test case cross reference matrix.

Given that one has used a test monitor tool such as the JOVIAL

*J73 Automated Verification System (1) ,this matrix can be

automatically constructed with rows corresponding to program

DD-paths and columns corresponding to test cases. To

illustrate the construction of this matrix, the test case cross

reference matrix depicted in Table 3-2 was generated based on

the flowchart shown in Figure 3-8.

Table 3-2. Sample Test Case Cross Reference Matrix

0

DD-path Test Case

No. 1 2 3 4 5 6

11 1 0 0 0 0

*2 0 0 1 1 1 1

3 0 0 1 1 0 0

4 0 0 0 0 1 1

5 1 0 1 0 1 0

*6 0 1 0 1 0 1

1. Gannon, C. and R. F. Else, "JOVIAL J73 Automated

Verification System User's Manual," General Research

S Corporation, July 1981.

3-14

I- .. . -.. . I

I2
I,

DO-PATH - 0

II DO-PATH

I4

5 6
I U
I I

' I 7I DO-PATH

K I I"

I I
DO-PATH j . r .. DD-PATH

531 I
1I -

Figure 3-8. Sample Application Flowchart and Test Paths

S

3-15

S

7 The selection method for strategy 3 is simple, once the

test case cross reference matrix is generated. One selects for

retest those test cases identified by a "1" in the row of the

test case cross reference matrix corresponding to the modified

DD-path. For example, if DD-path 3 in the flowchart shown in

Figure 3-8 is changed, the third row of the test case cross

reference matrix shows that the elements in columns 3 and 4 are

set to one. Therefore, according to strategy 3, test cases 3

and 4 should be reron.

3.2.3.2 Limitations

This method restricts selection of test cases to just those

test cases that execute the modified DD-path. It is not

concerned with those DD-paths which reach the modified code.

Because of this limitation (see page 3-9, 3rd paragraph), this

strategy will no longer be considered.

3.2.4 Strategy 4

3.2.4.1 Methods and Procedures

This strategy requires the development of the test case

cross reference matrix as previously discussed. In addition,

DD-path reachability must be determined.

To identify DD-paths that reach the modified DD-path,

reachability information is needed which can be obtained from

the JOVIAL J73 Automated Verification System (1) .

Alternatively, reachability information can also be obtained by

applying transitive closure (2) to the connectivity matrix.

1. Gannon, C. and R. F. Else, "JOVIAL J73 Automated

Verification System User's Manual," General Research

Corporation, July 1981.

2. Warshall, S., "A Theorem on Boolean Matrices," Journal of U

ACM, Vol. 9, No. 1 (1962), pp. 11-12.

3-16

Connectivity information can be obtained from several static

analyzers such as the PACE (1).

Data from the test case cross reference matrix and

reachability matrix are coupled with a optimization technique

to minimize the number of test cases selected for retest.

The technique used to optimize the selection process is 0-i

integer programming. This model consists of minimizing the

function:

Z = clX + c2X + ... + cnX
1 1 2 2 n n

subject to the following constraints:
allX 1 + a X2 + ... + alnX n > b 1

a 21 X1 ++ ... + a2nX n > b 2

a X >a 2n-b

aX + aX + ... + aX> bm

ml m2 2 mnn-

X =0 or 1

where Z is commonly referred to as the objective functi-,n, c.

is a cost element of the objective function, the a.. elements13
are coefficients of the constraints, b i is the lower bound of

each constraint row i, and X. is the variable for solutionJ

which can only take on the value 0 or 1.

Let us assume that during initial validation testing of the

software there were n test cases and m program DD-paths. In 0

terms of this model, each X. corresponds uniquely to one of

IS4]

1. Fischer, K.F., "The Product Assurance Confidence Evaluator,

(PACE)," Quality Assurance Software Tools User's Guide, TRW

Software Product Assurance, STP-6039, January 1977.

3-17

the n test cases. The interpretation of the final solution

would be that for each j where X.=1, the corresponding jth
J

test case be included in the retest subset. For each j where

X.=0, the corresponding jth test case need not be included in

the basic model.

The cost element of the objective function (c.) is the

actual cost associated with rerunning each test case.

Throughout this section, we assume that the cost of rerunning

each test case is identical (cj=l).

The constraint coefficients (a..) are taken directly from
1J

the elements of the test case cross reference matrix. If

testing is done with a tool that monitors testing and reports

DD-path execution incidence, then the constraint coefficients

can be generated automatically.

The b.'s (right hand side column) reflect whether or not

DD-path i needs to be tested as required by the respective

retest strategy. This is determined by examining the branching

structure of the program by means of the reachability matrix.

To implement this strategy one uses the kth row of the

reachability matrix (where k corresponds to the modified

DD-path) for the right hand side of the integer programming

model. This will force a solution such that all DD-paths

reachable from the modified DD-path are retested.

The optimal solution of the objective function is the

minimum number of test cases necessary to ensure that all

DD-paths reachable from the modified code are executed at least

* once. The resulting X.'s, with a value of 1, identify the

subset of test cases to be included in the retest package.

It is possible that the testbed does not completely test

all DD-path-, in a program. If a DD-path n a program is

modified and the testbed does not contain a test case that

e

3-18

*w

completely exercises that DD-path, then the 0-1 integer

programming model cannot be solved (infeasible solution).

Should this occurs, a modified solution can be reached by

either eliminating the constraint(s) with all zero coefficients

and resolving the model, or by constructing a new te'st case

that executes the untested code and adding it to the model.

This basic model could be solved by a standard 0-1 integer
programming algorithm. A step-by-step procedure for solving .

0-p integer programming models is presented by Taha (1) . For

large programs, however, the magnitude of the data could

overflow available storage in many computers, thereby,

preventing its practical solution. Four methods can be used to

greatly reduce the size of the data needed for model

* formulation:

1. If a test does not execute any of the modified code,

then its execution will surely not validate the

modification. Therefore, one can discard from retest

consideration those test cases that do not exercise

the modified DD-paths. This is done by eliminating

those columns (test cases) that contain a 0 in the

row(s) corresponding to modified the DD-path(s).

2. One can eliminate from the model those constraints

corresponding to DD-paths that are incompatible with

(i.e., never reach to or are reachable from) the

modified code. This is done by discarding those

constraints whose b. value is 0.
1

3. One can eliminate from the model those constraints
that are duplicates of other constraints. If one

constraint is satisfied, its duplicate is also

satisfied in which case the latter is redundant.

1. Taha, H.A. An Introduction to Operations Research, The

MacMillan Company, 1971, pp. 327-341.

3-19

V

6 4. One can eliminate from the model any constraint

containing all the elements included in the objective

function (Z). Since any solution will satisfy that

constraint, it is extraneous.

A specific example will be reviewed to illustrate the

procedure. If the flow of a routine were as shown in Figure

3-8, there could be as many as 6 test cases designed to

exercise all program functions. The test case cross reference

matrix (Table 3-3) correlates test cases with executed

DD-paths. For example, test case 1 exercises DD-paths 1 and

5. The connectivity matrix (Table 3-4). puts the logic flow of

Figure 3-8 into a matrix format which can be converted into a

reachability matrix (Table 3-5) by applying transitive

closure. For purposes of this research, the reachability

matrix has l's in the main diagonal to assure that the modified

DD-paths are retested. Let us suppose that a program

modification is made in DD-path 3 (in Figure 3-8) and we apply

retest strategy 4. The elements of the test case cross

reference matrix (Table 3-3) serve as coefficients of the

constraint expressions (a.j's), and the right hand side

values (bi's) are taken from the third row (since OD-path 3

was modified) of the reachability matrix. The model for this

sample application would be as stated in Figure 3-9.

MINIMIZE Z = X1 + X 2 + X 3 + X 4 + X 5 + X6

SUBJECT TO: X + X >0
1 2

X 3 + X 4 + X 5 + X6 >0

X3 + X4 >1
x5 + x6 >0

X1 + X3 X5 >1

X2 + X4 + X 6 >

Figure 3-9. Sample Retest Model Formulation 7

3-20

* 'I

Table 3-3. Example Test Case Cross Reference Matrix -

Test Case

DD-ath_ 1 2 3 4 5 6

1 1 1 0 0 0 0 •

2 0 0 1 1 1 1

3 0 0 1 1 0 0

4 0 0 0 0 1 1

5 1 0 1 0 1 0 -O

6 0 1 0 1 0 1

Table 3-4. Example Connectivity Matrix

DD-Path

DD-Path 1 2 3 4 5 6

1 0 0 0 0 1 1

2 0 0 1 1 0 0

3 0 0 0 0 1 1

4 0 0 0 0 1 1
5 0 0 0 0 0 0

6 0 0 0 0 0 0

Table 3-5. Example Reachability Matrix

DD-Path

DD-path 1 2 3 4 5 6

1 1 0 0 0 1 1

2 0 1 1 1 1 1

3 0 0 1 0 1 1

4 0 0 0 1 1 1

| 5 0 0 0 0 1 0

6 0 0 0 0 0 1

3-21

The sample retest model formulation (Figure 3-9) can be

reduced by the application of the reduction rules as described

below:

a. Reduction Rule 1: Eliminate those columns (test cases)
that contain an 0 in the row(s) corresponding to the

modified DD-paths.

The third constraint in the formulation is examined to

determine which test cases (X. s) exercise DD-path 3 (since ".

DD-path 3 was modified). The third constraint indicates that

only test cases 3 and 4 exercise DD-path 3, therefore, test

cases 1, 2, 5, and 6 can be eliminated from all the constraints

in the formulation. Figure 3-10 shows the formulation after

application of reduction rule 1.

MINIMIZE Z = X3 + X4

SUBJECT TO: X3 + X4 >0

X 3 + X4 > I
x3 > 1

x 4 > 1

Figure 3-10. Sample Retest Model Formulation After

Application of Reduction Rule 1

b. Reduction Rule 2: Discard all constraints whose b value

is 0.

The first constraint in the reduced formulation (Figure

3-10) has a b. value of 0 and can be eliminated, further

* reducing the formulation as shown in Figure 3-11.

MINIMIZE Z = X3 + X 4

SUBJECT TO: X3 + X 4 > 1
X 3 1

X4 >1

Figure 3-11. Sample Retest Model Formulation

After Application of Reduction Rule 2

3-22

L

0c. Reduction Rule 3: Eliminate any constraint cotiigall

l's.

Since there are no duplicate constraints in the

-c formulation, application of rule 3 will not further reduce the
formulation.

d. Reduction Rule 4: Eliminate any constraint containingal

elements included in the objective function (Z) unless it

is the only remaining constraint.

in Figure 3-11, the objective function Z is equal tox

and x The first constraint in the reduced formulation

shown in Figure 3-11 contains both these elements and can be

eliminated, reducing the formulation to:

MINIMIZE Z X3 + X
SUBJECT TO: x 3 >1

X x4 >14

Solution of this problem using 0-1 integer programming shows

that both X3and X 4 equal 1 and the optimal value of the

objective function is 2. This means that there are two test

cases to be rerun and that they are test cases 3 and 4.

3.2.4.2 Limitation

This strategy, although more comprehensive than the

previous strategies, is still incomplete because it does not

* account for the impact of the modification to the DD-paths

reached from the modified code.

3.2.5 Strategy 5

The implementation of this strategy is similar to that for

strategy 4. The same matrices (connectivity, reachability, and
test case cross reference) and the optimization method are

required, but values for the bi's are determined differently. 91

3.2.5.1 Methods and Procedures

This strategy takes into account the DD-paths reaching to

and reached from the modified code. To achieve this goal a

3-23

logical OR operation is performed between the Kth row and the

Kth column (where K corresponds to the modified DD-path) of the

reachability matrix. The result of this logical OR is used as

the b 's of 0-1 integer programming model.

An example showing how to compute the b i 's for 0-1

programming model based on strategy 5 is presented below. The

flowchart shown in Figure 3-12, the test case cross reference

matrix shown in Table 3-6, and the reachability matrix depicted

in Table 3-7 are used in the formulation of this example. Once

again, a modification to DD-path 3 is assumed.

Row 3 of the Reachability Matrix 001011-

Column 3 of the Reachability Matrix 0 1 1 0 0 0

Logical OR 0 1 1 0 1 1 (bi's)

The formulation of the 0-1 integer programming model for this

example is:

MINIMIZE Z= X + X + X + X + X + X
1 2 3 4 5 6

SUBJECT TO: X + X > 0 6

X3 + X4 + X5 + X6 > 1

X + X4 > 1

X5 + X6 > 0

X1 + X3 + X5 > 1 0

X2 + X4 + X6 > 1

After applying reduction rules, the model reduces to:

*D

MINIMIZE Z = X 3 + X4

SUBJECT TO: X3 >1

4 >1

Solution of the model indicates that test cases 3 and 4 need to

be rerun.

3-24

DD-PATHH
12

DDDO-PAT

L -

DDO-PATH

3

L
IT

I 7 ID

FROM-PATHT

LIII= 1111 DO-PATH

Figure 3-12. Example Formulation

3-25

w

Table 3-6. Example Test Case Cross Reference Matrix

TEST CASE

DD-Path 1 2 3 4 5 6

1 1 1 0 0 0 0

2 0 0 1 1 1 1

3 0 0 1 1 0 0

4 0 0 0 0 1 1

5 1 0 1 0 1 0

6 0 1 0 1 0 1

.-

Table 3-7. Example Reachability Matrix
-

DD-Path

DD-Path 1 2 3 4 5 6

1 1 0 0 0 1 1

2 0 1 1 1 1 1

3 0 0 1 0 1 1

40"4 0 0 0 1 1 1
5 0 0 0 0 1 0

6 0 0 0 0 0 1

3-26

Sp

0 For this particular example, the application of strategy 5

yields the same result as the application of strategy 4.

However, this is not always the case. For example, given the

directed graph represented in Figure 3-12, the reachability

matrix and test case cross reference matrix shown in Table 3-6

and Table 3-7 respectively, and assuming a modification to

DD-path 5, the application of strategy 5 will yield a different

result than strategy 4 as shown in Figure 3-13.

As indicated, the subset of the testbed selected for retest
by the application of strategy 5 contains a greater number of

test cases than the subset selected by the application of

strategy 4. Although application of strategy 5 requires more

retesting, it is more apt to detect errors.

3.2.5.2 Limitation

This strategy covers DD-paths reaching to the modified code

and DD-paths reachable from the modified code. Although

strategy 5 adequately considers a program's control structure,

consideration is not given to a program's data dependency

structure. Therefore, it may select more test cases than are

necessary for retesting.

3.2.6 Strategy 6

This strategy also uses the connectivity, reachability, and

test case cross reference matrices. The matrices are

constructed the same way and are used for the same purposes.

*Once again, the values for the b.'s are determined

differently.

3.3.6.1 Methods and Procedures

Since this strategy is an enhanced version of strategy 5,

it uses the 0-1 integer programming technique and data

* reduction as described before.

The critical difference here is the analysis of data

dependency, which is an understanding of the flow of data

3-27

Al ^Il Al Al ^I ^
ccIA I a lo %D

o m x
x3 x I

+' NM+

42 ~ ~ x E xr

-A ~ + +. +C7 4 '0

1- 41 WON

0. ,N I' NMN 4 444

a 00 CA VON2

mUx E(A E !--E-

+ +.

+ +C +C ICx

43 N

42 4 0 5
IN 4.+ + *al 4

Eo 42 w- x .
o - 0 f EN U)

C -. IC Z; .4'41 t

o~~d M 30

43 .tIC ICICX !41

U U 'U54

m NO NO En

0. I 1- 343 N En
4 42U) 4 43-3 - n

- U ~-28553 I 4

within a program. The tool used in this analysis is the

set/use matrix. Data within the set/use matrix indicates

whether or not a particular variable is set or used within each

DD-path. The setting of a variable occurs when a value is 0

placed into that variable's storage location (i.e., A=5). The

using of a variable occurs when the storage location of a

variable is accessed and the contents read and then used (i.e.,

A=B). A variable can be both set and used in the same

statement (i.e., X=X+I).

The cells of a set/use matrix indicate what variables are

set and used within the source statements contained in DD-paths

of the target program. The set/use matrix in Figure 3-14 shows

the data dependency for the example flowchart in Figure 3-12.

In the matrix, the occurrence of an "S", "U", or "X" indicates

that a variable is set, used, or both set and used,

respectively.

DD-paths

Variables 1 2 3 4 5 6

A X U U U U U

B U U U U

X U X X X U

Y U U

Z U U

Figure 3-14. Sample Set/Use Matrix

Given the set/use matrix and the reachability matrix, the

retest subset can be reduced further than with the reachability

matrix alone. Recall that for strategy 4, the row of the

reachability matrix corresponding to the modified DD-path

becomes the right hand side (bi's) of the 0-1 integer

programming model. By reducing the number of l's in the right

hand side, the number of test cases that must be rerun may be

reduced.

3-29

Two algorithms have been developed which operate on the

set/use matrix and the row and column of the reachability

matrix corresponding to the modified DD-paths to determine the

data flow impact of the modified variables.

Analysis of the module set/use matrix can be used to

further reduce the number of selected test cases. This is

performed by identifying DD-paths in which the data elements

can affect or be affected by the modification. The data
analysis algorithm A, located in Appendix A, is used to

determine all DD-paths containing data elements which

potentially affect data conditions used in the modified

DD-path. The data analysis algorithm B, located in Appendix B,

is used to determine all DD-paths containing data elements

which are potentially affected by data conditions set by the

modified DD-path.

V In the following example, the flow chart shown in Figure

3-15, the test case cross reference matrix illustrated in Table

3-8, the reachability matrix depicted in Table 3-9, and the set

use matrix in Table 3-10 are used. A modification to DD-path 3

is assumed. The first step is to use the data analysis

algorithm A to identify DD-paths containing data elements which

potentially affect data conditions used in the modified

DD-path. A logical AND is then performed between the result of

algorithm A and column 3 (since DD-path 3 is modified) of the

reachability matrix. This identifies the DD-paths which reach

to and are affected by the modification. Figure 3-16

illustrates this analysis.

Column 3 of Reachability Matrix 0 1 1 0 0 0

Result of Algorithm A 1 0 1 1 1 0

Data/Logic Dependencies (Logical AND) 0 0 1 0 0 0 (1)

Reaching to Modified DD-path •

Figure 3-16. Logical AND Operation (Step I)

3-30

. .. * S. ' -

DDDD-PAT

+ DD-PATHA-H
13

I DD-PATH

DDPT DD-PATH

V*r 315 Exapl Fomlto M

I3 31

Table 3-8. Example Test Case Cross Reference Matrix

TEST CASE

DD-Path 1 2 3 4 5 6

1 1 1 0 0 0 0

2 0 0 1 1 1 1

3 0 0 1 1 0 0

4 0 0 0 0 1 1

5 1 0 1 0 1 0

6 0 1 0 1 0 1

Table 3-9. Example Reachability Matrix

DD-path

DD-Path 1 2 3 4 5 6

1 1 0 0 0 1 1

2 0 1 1 1 1 1

3 0 0 1 0 1 1

4 0 0 0 1 1 1

5 0 0 0 0 1 0

6 0 0 0 0 0 1

Table 3-10. Sample Set/Use Matrix

DD-path 0

Variables 1 2 3 4 5 6

A X U U U U U
S

B U U U U

X U X X X U

y U U

Z U U

3-32

S

The second step is to identify DD-paths reached from the

modified DD-path and data elements affected by the

modification. The analysis proceeds in the same manner, except

the logical AND is performed between the result of the data

analysis algorithm B, described in Appendix B, and the third

row of the reachability matrix. Figure 3-17, demonstrates the

logical AND operation used to determine the DD-paths affected

by and reached from the modified DD-path. -0

Row 3 of the Reachability Matrix 0 0 1 0 1 1

Result of Algorithm B 0 1 1 1 1 1

Data/logic Dependencies

Reached From the Modified DD-Path 0 0 1 0 1 1 (II)

Figure 3-17. Logical AND Operation (Step II)

Finally, a logical OR between the result of step (I) and

the result of step (II) is performed to identify the final

b.'s used in the 0-1 integer programming model. Figure 3-18i
illustrates this logical OR operation.

Result of Step 1 0 0 1 0 0 0

Result of Step 2 0 0 1 0 1 1

Final b 's 0 0 1 0 1 1

Figure 3-18. Logical OR Operation

The remainder of the test case selection methodology (i.e.,

solving the 0-1 integer programing model) is identical to that

described for strategy 4 and 5.

3.2.6.2 Manual Walkthrough of Set/Use Matrix

In this paragraph, a manual walkthrough of the set/use

matrix analysis using Algorithms A and B is conducted. Figure

3-19 illustrates a set/use matrix for a module containing 7

DD-paths and 3 variables.

3-33

U

~DD-pa th

Variable 1 2 3 4 5 6 7

Y S S U U

z s s

Figure 3-19. Example Set/Use Matrix

Throughout this walkthrough, a modification to DD-path 4 is

assumed.

3.2.6.2.1 Manual Walkthrough of Algorithm A

Since DD-path 4 is modified, the 4th column of the set/use

matrix is flagged with a 1 in row 0 of that column and is then

searched. Since row X contains U, the column array

(implemented in Figure 3-20 as column 0) is flagged with a 1.

The second search is of row X and column 1 is flagged in the

row array (implemented in the Figure 3-19 as row 0), because

the variable is set in DD-path 1. The third search is of

column 1 because that column was flagged during the previous

search. Since there are no variables used in DD-path 1, set in

row X, or used in column 4 the algorithm terminates.

DD-path

Variable 1 2 3 4 5 6 7 Column 0

I !
I I
! I

x-- . -. - -------------- U ------- 1 ->

Y S S U U 0

z s s 0
Row. 0 Y 0 0, 0 .0 ,0 0 0 0

Figure 3-20. Set/Use Matrix After Applying Algorithm A

3-34

Upon algorithm termination, the columns of row 0 (which

contain flags set during the algorithm's processing) containing

a 1 identify DD-paths that use the variable being used in the

modified DD-path. The row flags DD-paths that are affected and

reach to the modification.

3.2.6.2.2 Manual Walkthrough of Algorithm B

Since DD-path 4 is modified, the fourth column of the

set/use matrix is flagged with a 1 in row 0 of that column and -

is then searched. Since row Y contains an S, the column array

(implemented in the Figure 3-17 as Column 0) is flagged with a

1. The second search is of row Y and columns 5 and 6 are

flagged in the row array (implemented in Figure 3-21 as row 0,)

because variable Y is used in DD-path 5 and 6. The third

search is of column 5 because that column was flagged during

the previous search. Since there are no variables set in that

DD-path, column 6 (also flagged in search 2) is searched next.

The S found in row Z of column 6 causes row Z to be flagged,

which forces row Z to be searched next. Since no U's are found

in row Z, the algorithm terminates.

DD-PATH

Variable 1 2 3 4 5 6 7 Column 0

X S U U U U 0
I I I *

--------------------------- S-----S----Y---- --------> 1
- S---SS---> 1

Row O 0 0 0 1 1 1 0

Figure 3-21. Set/Use Matrix After Applying Algorithm B

Upon algorithm termination, the columns of row 0 (which

contain flags set during the algorithm's processing) containing

a 1 identify DD-paths that use the variable being set in the

modified DD-path. Row 0 flags DD-paths that are reached from

the modification.

W

3-35

3.2.6.3 Live Example of Strategy 6 40

This paragraph presents a live example of the Strategy 6.

The source code for the data statement module used in this

example is located in Appendix E. The function of this module

is to perform syntax analyses on data assignment statements

written in program design language. Figure 3-22 provides a

graphic representation of the data statement module and a

tabular listing of statements contained in each DD-path. Each

node of the graph corresponds to an executable statement in the

source code. The reachability matrix and the test case cross

reference matrix for the data statement module are illustrated

in Table 3-11 and Table 3-12, respectively.

Table 3-13 illustrates the set/use matrix which shows the

status of each variable in the data statement module. Tables

3-14 and 3-15 show the set/use matrix after applying Algorithm

* A and Algorithm B, respectively.

In this example, a modification to DD-path 5 is assumed.

Therefore, we looked up column 5 of the reachability matrix

(Table 3-11) to identify all DD-paths reaching DD-path 5. A

logical AND is performed between the result of the analysis of

algorithm A to the set/use matrix (Table 3-14) and column 5 of

the reachability matrix. Figure 3-23 shows this operation.

Algorithm A 1 1 0 0 i 0 1 1 0 1 0 0 1 0

Col. 5 of Reachability 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Logical AND

S1 11 0 0 1 0 1 1 0 1 0 0 1 0

Figure 3-23. Logical AND Operation for Data Statement Module

Another logical AND is performed between the result of the

analysis of Algorithm B (Table 3-15) and row 5 of the

reachability matrix. This operation is shown in Figure 3-24.

3-36

*

4 STATEMENTS
DD-PATH INCLUDED IN

, r DD-PATH

1 1,2,3,4,5
2462 1,3,4,5

3 5,24 - r
4 5,6

20 7 56,7,8,9
6 9,10,11

.7 11,12,14,21- .
8' 8 11, 13, 14,21"

9 9,15

911 15, 19,2112 6,20,2113 21,22,23,5

14 21,5

415,

821,3142

13 212,22

14 21,54

i0

IS

Figure 3-22. Graph Presentation of Data Statement Module

and Identification of DD-paths w

3-37

- --

Table 3-11. Reachability Matrix for Data Statement Module

DD-path

DD-path 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1 1 1 1 1

4 0 0 1 1 1 1 1 1 1 1 1 1 1 1

5 0 0 1 1 1 1 1 1 1 1 111 I

6 0 01 11 11 1 111 11 1

7 0 0 1 1 1 1 1 1 1 1 1 1 1 1

8 0 0 1 1 1 1 1 1 1 1 1 1 1 1

9 0 0 1 1 1 1 1 1 1 1 1 1 1

10 0 0 1 1 1 1 1 1 1 1 1 1 1 1

11 0 0 1 1 1 1 1 1 1 1 1 1 1 1

12 0 0 1 1 1 1 1 1 1 1 1 1 1 1

13 0 0 1 1 1 1 1 1 1 1 1 1 1 1

14 0 0 1 1 1 1 1 1 1 1 1 1 1 1

3-38

f •

Table 3-12. Test Case Cross Reference Matrix

For Data Statement Module

Test Case

DD-path 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 At

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0.

2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1.

4 1 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0

6 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

9 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0

14 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

33

3-39

p

* ~Table 3-13. Set/Use Matrix For Data Statement Module --

DD -Path-

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14

databit S S S

dataexist U -0

ind X X X

flag X X U U S S S X U

tokcode U U U U U U U U U U

ends U U U U-

retcode S U U U U U U U

data U U U U

semi u u u u U

semimisag U U

*datmisag U

csdp' end' of 'file U U U U U U U

endmi8sag U

~0

3-40

Table 3-14. Set/Use Matrix For Data Statement Module

after Applying Algorithm A

DD-path Col.
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0
databit S S S 0
dataexist U I

ind X X X 1
flag X X U U S S S X U 1
tokcode U U U U U U U U U U I
ends U U U U 0
Retcode S U U U U U U U 1
Data U U UU I

semi U U U U U

semimissg UU I

datamissg U 1
csdp'end'oflfile U U U U U U U I

endmissg U 1

Row0 1 1 0 0 1 0 1 1 0 1 0 0 1 0

3-41

.......

4 Table 3-15. Set/Use Matrix for Data Statement Module

after Applying Algorithm 8

DD-path Col.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

databit S S S 1
dataexist U 0

ind X X X 1
flag X X U U S S S X U 1
tokcode U U U U U U U U U U 0

ends U U U U 0
Retcode S U U U U U U U 1

Data U U UU 0
semi U UU UU 0

semimissg U U 0
datamisag U 0
csdp'end'oflfil* U U U U U U U 0

endmisag U 0

Rowv0 1 1 1 1 1 0 1 1 0 1 1 1 1 1

3-42

- U
Algorithm B 1 1 1 1 1 0 1 1 0 1 1 1 1 1

Row 5 of Reachability 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Logical AND
R 2 0 0 1 1 1 0 1 1 0 1 1 1 1 1

Figure 3-24. Logical AND Operation for Data Statement Module

To compute the final bi's, a logical OR is performed

between the results of the logical operations shown in Figures

3-23 and 3-24. This logical OR is performed to determine all

DD-paths reached to or reached from the modified code. Figure

3-25 illustrates this logical OR operation.

R 1 1 0 0 1 0 1 1 0 1 0 0 1 0

R2 0 0 1 1 1 0 1 1 0 1 1 1 1 1
2V

Logical OR

Final b.'s 1 1 1 1 1 0 1 1 0 1 1 1 1 1

Figure 3-25. Logical OR Operation for Data Statement Module

The result of the logical OR operation is used as the bi's

for the 0-1 integer programming model. Figure 3-26 illustrates

the formulation of the 0-1 integer programming model for this

example. To reduce the size of the model, the data reduction

rules identified and described in paragraph 3.2.4.1 are

applied. The reduced 0-1 integer programming model is shown in

Figure 3-27.

The solution to the reduced 0-1 integer programming model S

identifies the minimum number of test cases necessary to

implement retest strategy 6 and can be obtained by applying the

step-by-step procedure described by Taha (1). Results indicate

!U

1. Taha, H.A., An Introduction to Operations Research, The

McMillan Company, 1971, p. 327-341.

3-43

iS

-4 .4 -4 4-4-4 0 -4 44-4 4 "1- 4

Al Al Al Al Al Al Al Al Al Al Al Al Al Al

N N N
N N N

x x x(

-4 -4 -4
C4 N N

,(x x

N N N NN N 01

M+hC m C + 4-)4..

X '4 x xK x x
x x

+. + + + + +

r4 - 4 -4 -4 -4 -4 -44.

++ + +.+.+. + +4-
t'- - .r - r -C

x x KKK x x K
+ + . .4.4. +44.

ko W %0%DW %D wO 4. - -
-4 -4 -4 -4 ..4 ... (d

+ + 4.4. + 4.
LA n LA LnU LA Ln
,4 - 4 0

_4 ~4 .4 14 (

+ +.4 +.4 0 +
C1 N~ N~ N N N
-4 - 4 -4 -4 -- 4 -4

x x xx x
+ + + 0

-4 -4 -4 -4 -4 - 4-

+ .. 44 + + +.

xx x xx x x x

04+
0 0

0
0

1+

4. +4 . 4. +4. +

+ +44 +. +.0

x KxK x x x x

+ .4. . +. + 4
-W 'a 0% % '0' wO w0 W

x X X X XX X K
4.L

+ 4.4. + +. +N +

l 6 4 .

3-4

X + X3 + X5 + X7 + X9 + X11 + X17 + X9 1

1 2 + X4 + X6 + x8 +1X10 + x12 + i 8 + 1 20
xI+ X2+ X3+ X + X5+ X6+ X7+ X8+ X9+ XIO+ X + X 2 + X17+ X 8+ X 9+ X20 >

1 +2+13+4 5 ~6 7 189 10 11 12 17 18 19 120 2!1
X1+ X2+ X3+ X4 > 1

+ XI7+ X18+ 19+ 120 >1

X5+ X6+ X7+ X>1

9+ X10+ x 111 + 112

X++ X + X X + X1+ X + X + X8 >

3+ 4 7 8 + 12 19 120 -1

* U

U

Figure 3-27. Reduced 0-1 Integer Programming Model

For Data S'atement Module

3

3-45

that a minimum of 4 test cases must be rerun to validate the

modification made to DD-path 5 and that there are 196

alternative optimum solutions (i.e., minimum combinations of

different test cases that satisfy the constraints contained in

this example) . Table 3-16 identifies all the alternative

optimums that will satisfy the 0-1 integer programming model.

Given this high number of alternative optimums, some might

conclude that the probability of selecting a feasible solution

without benefit of the retest methodology is high. However,

* even if we assume that the maintenance team knows that the

minimum number of test cases that must be rerun is 4, the

probability, of selecting a feasible solution without further

analysis is less than 3%. This is calculated by the ratio of

alternative optimum solutions to the number of possible

combinations of test case selections as shown in Figure 3-28.

Therefore, this demonstrates the value of employing the retest

methodology.

3.2.7 System Level Analysis

Since changes in data or logic conditions can affect code

in remote locations, one concern is the global communication

between system modules. This communication is accomplished via

global variables shared by modules. modification of a module

within a software system could affect other modules if they use

the same global variables as the modified module.6

3.2.7.1 Global Variable Set/Use Matrix

To determine the relationship between modules and global

* variables, a global variable set/use matrix is employed to

monitor and record usage of global variables within the

computer program. The set/use relationships between modules

and global variables are defined below:

*1. A variable is defined to be "set" if its value is changed

(e.g., the variable A is set in the statement A=5, A=X+Y).

This is represented by the letter "IS" in the global

variable set/use matrix.

3-46

Table 3-16. Alternative Optimum Combinations of Test Casesfor Data Statement Mndule Modification

(1,5,9,20) (2,5,9,19) (3,5,9,18) (4,5,9,17)(1,5,10,19) (2,5,9,20) (3,5,9,20) (4,5,9,18)
(1,5,10,20) (2,5,10,19) (3,5,10,17) (4,5,9,19)
(1,5,11,18) (2,5,10,20) (3,5,10,18) (4,5,9,20)(1,5,11,20) (2,5,11,17) (3,5,10,19) (4,5,10,17)(1,5,12,17) (2,5,11,18) (3,5,10,20) (4,5,10,18)
(1,5,12,18) (2,5,11,19) (3,5,11,18) (4,5,10,19)
(1,5,12,19) (2,5,11,20) (3,5,11,20) (4,5,10,20)
(1,5,12,20) (2,5,12,17) (3,5,12,17) (4,5,11,17)(1,6,9,19) (2,5,12,18) (3,5,12,18) (4,5,11,18)
(1,6,9,20) (2,5,12,19) (3,5,12,19) (4,5,11,19)(1,6,10,19) (2,5,12,20) (3,5,12,20) (4,5,11,20)
(1,6,10,20) (2,6,9,19) (3,6,9,17) (4,5,12,17)(1,6 ,11,17) (2,6,9 ,20) (3,6,9,18) (4,5,12,18)(1,6,11,18) (2,6,10,19) (3,6,9,19) (4,5,12,19)
(1,6,11,19) (2,6,11,17) (3,6,9,20) (4,5,12,20)
(1,6,11,20) (2,6,11,18) (3,6,10,17) (4,6,9,17)(1,6,12,17) (2,6,11,19) (3,6,10,18) (4,6,9,18)
(1,6,12,18) (2,6,11,20) (3,6,10,19) (4,6,9,19)
(1,6,12,19) (2,6,12,17) (3,6,10,20) (4,6,9,20)(1,6,12,20) (2,6,12,19) (3,6,11,17) (4,6,10,17)
(1,7,9,18) (2,7,9,17) (3,6,11,18) (4,6,10,19)
(1,7,9,20) (2,7,9,18) (3,6,11,19) (4,6,11,17)(1,7,10,17) (2,7,9,-19) (3,6,11,20) (4,6,11,18)
(1,7,10,18) (2,7,9,20) (3,6,12,17) (4,6,11,19)(1,7,10,19) (2,7,10,17) (3,6,12,18) (4,6,11,20)
(1,7,10,20) (2,7,10,18) (3,6,12,19) (4,6,12,17)lo
(1,7,11,18) (2,7,10,19) (3,6,12,20) (4,6,12,19)
(1,7,11,20) (2,7,10,20) (3,7,9,18) (4,7,9,17)*(1,7,12,17) (2,7,11,17) (3,7,9,20) (4,7,9,18,
(1,7,12,18) (2,7,11,18) (3,7,10,17) (4,7,9,19)
(1,7,12,19) (2,7,31,19) (3,7,10,18) (4,7,9,20)
(1,7,12,20) (2,7,11,20) (:2,7,10,19) (4,7,10,17)
(1,8,9,17) (2,7,12,17) (3,7,10,20) (4,7,10,18)
(1,8,9,18) (2,7,12,18) (3,7,11,17) (4,7,10,19)
(1,8,9,19) (2,7,12,19) (3,7,11,18) (4,7,10,20)
(1,8,9,20) (2,7,12,20) (3,8,9,17) (4,7,11,17)
(1,8,10,17) (2,8,9,17) (3,8,9,18) (4,7,11,18)
(1,8,10,18) (2,8,9,18) (3,8,9,19) (4,7,12,17)6(1,8,10,19) (2,8,9,19) (3,8,9,20) (4,7,12,18)
(1,8,10,20) (2,8,9,20) (3,8,10,17) (4,8,9,17)
(1,8,11,17) (2,8,10,17) (3,8,10,18) (4,8,9,18)
(1,8,11,18) (2,8,10,19) (3,8,10,19) (4,8,9,19)
(1,8,11,19) (2,8,11,17) (3,8,10,20) (4,8,9,20)(1,8,11,20) (2,8,11,18) (3,8,11,17) (4,8,10,17) w(1,8,12,17) (2,8,11,19) (3,8,11,18) (4,8,10,19)
(1,8,12,18) (2,8,11,20) (3,8,12,17) (4,8,11,17)(1,8,12,19) (2,8,12,17) (3,8,12,18) (4,8,11,18)(1,8,12,20) (2,8,12,19) (3,7,12,18) (4,8,12,17)

3-47

Number of Possible

Combinations of Testcases = N! = 22! = 7315

(N-P) !P! 18!4!

N = Number of testcases in testbed

P = Minimum Number of Testcases to be rerun

Probability of Selecting Number of Viable Solutions

A Feasible Solution Number of Possible Combinations

196 = .0268 = 3%

7315

Figure 3-28. Probability of Feasible Testcase Selection

Without Application of the Retest Methodology For

Data Statement Module

3-48

2. A variable is defined to be "used" if it is accessed and

its value is used during the process (e.g., variables B and

C are used in the statement A=B+C). This is represented by

the letter "U" in the global variable set/use matrix.

3. A variable is defined to be both "set and used" if its

value is set and used in a statement (e.g., A=A+l);

represented in the matrix by the letter "X".

3.2.7.2 Example Using the Global Variable Set/Use Matrix

Suppose a DD-path in another module is modified and this

modification affects a global variable which has been used in a

DD-path of the data statement module. The effects of this

modification are reflected in the global variable set/use

matrix. By scanning the global variable set/use matrix, the

modules which use the modified global variable can be

identified. For example, as shown in Table 3-17, if global

variable A is modified in module 1, then modules 2 and 4 are

also identified for further analysis. Once the modules

affected by the remote modification are identified, each

individual module must be analyzed to determine the specific

DD-paths within the module which are affected by the remote

modification. This identification of DD-paths is accomplished

via the module set/use matrix because it maps variables

(global, local, arguments, etc.) in a module to the DD-paths of

the module. Since DD-paths affected by the remote modification

are identified, the procedure for selecting test cases to be

retested for these modules is accomplished by applying

strategy 6.

Table 3-17. Global Variable Set/Use Matrix

Global Modules

Variables 1 2 3 4 5

A S U U

B S U U

C U U

3-49

3.3 RESULT OBTAINED

3.3.1 Strategy Prioritization

In this section, each retest strategy is prioritized based

upon the following factors:

a. Reliability. The probability that the computer

program modification is fault free.

b. Application Cost. The relative cost of running . -*

the Software Retest System (SRS) for one computer

program to identify those test cases that must be

rerun.

c. Retest Cost. The relative cost of running the

resulting test cases identified for retest by a

given strategy.

d. Degree of Automation. The portion of the

strategy that can be automated.

e. Cost of Implementation. The relative cost of

developing an SRS based upon a given strategy.

f. Ease of Implementation. The simplicity of U

developing an SRS based upon a given strategy.

Each of these criterion is associated with a weight factor

which identifies the importance of the criterion in meeting Air

Force retest objectives. The weight factor for each criterion

is given in Table 3-18. A weight factor of 3 indicates high

importance in meeting Air Force retest objectives, whereas a

weight factor of .5 indicates low importance.

A prioritization of the six retest strategies based on the

criteria identified above is shown in Table 3-18. This

prioritization is made using a scale from 1 to 5 where 5 is the

most favorable and 1 is the most unfavorable. For example, a 5

would indicate high reliability, low application cost, low

retest cost, high degree of automation, low implementation cost

3-50

-4 and high ease of implementation. The last column in the table

provides the total weighted cost-effectiveness for each

strategy.

Since interpretation of Table 3-18 is difficult because of

the polarity of the criteria, each strategy is described below.

Strategy 1: Rerun all Test Cases

The reliability of this strategy is low because it is

totally dependent on the adequacy of the testbed. Though a

large number of test cases may be rerun, t..ere is no assurance

that those test cases are adequate. The application cost is

low because the selection procedure is trivial. The retest

cost is high because all test cases need to be rerun. This

strategy can be automated easily due to the simplicity of the

procedure. Therefore, the implementation is simple and the

cost of implementation is low.

Strategy 2: Retest All Testable Paths Through the Changed Code

Although this strategy provides very high reliability, its

implementation is costly and difficult because the number of

paths through a program is generally very large. Since this

strategy requires the development of a test case for each path,

and the number of paths through the changed code can

potentially be very large; the number of test cases selected

for retest may be large causing a high retest cost. Because of 4

the problems associated with path analysis, the degree of

automation is low and the application cost is high.

Strategy 3: Rerun All Test Cases That Execute the Changed Code

The reliability of this strategy is low because although

all tests that execute the modified code are rerun, there is no

assurance that those tests are adequate. Since the number of

test cases selected for retest by this strategy is lower than

for strategies 1 and 2, the retest cost was rated as moderate.

The implementation of this strategy is relatively easy and cost

3-51

P W

39 u

>1U

09 9 0

Ij 0

0
u

C I 00

09

40 0 2

I3 0

0901

U~ -, ~ 3-52

effective since the only tools required for implementation

would be a test case cross reference analysis program to

identify the DD-paths covered by each test case), a statement

to DD-path association table (to identify statements contained

in each DD-path), and a code comparator (to determine the 0

location of the modifications). Similarly, the application

cost is relatively low because the processing required by this

strategy is relatively low when compared to the other

strategies. With the exception of the test case cross

reference analysis program, all tools required for

implementation have already been developed for other

applications; therefore, the degree of automation provided by

this strategy is relatively high.

Strategy 4: Retest All DD-paths Reached from the Changed Code

The reliability of this strategy is higher than the

previous strategy because it provides assurance that all

DD-paths reached by the modified code are covered. The retest

cost is lower for this strategy than the previous strategies

because the number of test cases identified for retest is

lower. The application cost is slightly higher than for

strategy 3 because more processing is required to determine the

reachability of all DD-paths in a program. When compared to

strategy 3, the implementation cost as well as the difficulty

of implementation is slightly higher because a tool to

determine the reachability of DD-paths within a program must be

built. Since automated tools to determine the reachability of

DD-paths within a program have been developed, the degree of

automation provided by this strategy is the same as that

provided by strategy 3.

Strategy 5: Retest All DD-paths Reaching To and Reached From

the Changed Code

This strategy provides higher reliability than the previous

strategy because assurance is given that all DD-paths reaching

to and reached from the modified code are covered. Since all

3-53

DD-paths reaching from the modified code must be identified and

logically ORed with those DD-paths reaching to the modified

code, the application cost as well as the implementation cost

is slightly higher for this strategy when compared to strategy

4. The retest cost is higher than for strategy 4 because the

number of test cases selected for retest will be larger. The

algorithm required for identification of DD-paths reaching to

and reached from the modified code is straightforward,

therefore, the ease of implementation is rated the same as for

strategy 4.

Strategy 6: Retest All DD-paths Reaching the Changed Code and

Setting Changed Data, and Reached From the Changed Code and

Using Changed Data

The purpose of analyzing data dependencies within a program

(strategy 6) is to reduce the amount of retesting required when

only a program's control structure (strategy 5) is used as a

basis for selecting test cases to retest. Therefore, strategy

6 will provide a lower retest cost than strategy 5 while

maintaining the same reliability. Both the implementation cost

as well as the application cost will be greater for strategy 6 U

than for strategy 5 because set/use analysis must be

performed. Since these algorithms have already been developed

and can be automated, this strategy provides the same degree of

automation and ease of implementation as strategy 5.

Based on the results of the prioritization, as identified

in Table 3-18, it is concluded that strategy 6 should be

implemented because it is the most cost-effective of the

strategies.

3.3.2 Methodology Characteristics

The software retest methodology has six interesting

characteristics:

1. Inadequacy of Test Bed (i.e., Infeasible Solution). It is

quite possible that test cases identified in a test case

cross reference matrix do not completely test all

3-5w

3-54

*DD-paths in a program. If part of a computer program is

K not properly tested and that part is modified later in the

maintenance phase, the 0-1 integer programming will

indicate an infeasible solution and will identify the 4
specific DD-paths that are not tested.

*2. Alternative Optimum.

It may be the case that minimum combinations of different

test cases could satisfy all constraints. Users of

mathematical programming models call this an "alternative

optimum". The following example is an illustration of an

alternative optimum. Assume the following constraints had

been derived from a problem:

VMINIMIZE Z =X + X + X
12 3

SUBJECT TO: X + X + X> 1

1 23
Xl + x + > 1

1>

X 2 + > 1

SOLUTION: Retest Set 1: (X1, X 2)

Retest Set 2: (XX)

The solution to this 0-1 integer programming model

indicates that two minimum combinations of test cases (Retest

Set 1 ot Retest Set 2) exist that satisfy all constraints in

4 the ,odcel. Therefore, selection of either retest set 1 or

retest set 2 will provide complete coverage.

3. Test Cost.

Up to this point we have assumed that the cost of rerunning

4 each test case is identical (e.g., c.=1). If we apply

the actual cost associated with rerunning each test case

.0

3-55

and apply the model, the model not only will produce

different sets of test cases, it will signal the most cost

effective set of test cases as well.

4. Language Independency .. 4

The software retest methodology is language independent.

This characteristic increases usability of the method

during the maintenance phase. The proposed automated

version of the software retest methodology carries this

characteristic as well. The only language dependent need

is for an automated analysis tool to provide information

necessary for the preparation of the retest matrices.

5. Consistent Behavior with Different Modifications.

The software retest methodology behaves consistently

regardless of the nature of modifications made to the

software system. One or a combination of the following AW

modifications may occur:

Addition: As long as addition of code does not create

a new DD-path, a new test case is not

needed. Otherwise the test case cross U

reference matrix should be updated (as

described in the "Software Retest System

Functional Description") and the retest

1 -methodology should be used to determine the

impact of the new additions to the code on

the rest of the software system.

Deletion: If deleting lines of code results in the

deletion of a DD-path, the test case cross

reference matrix must be updated. In the

maintenance phase, it is necessary to use

the retest methodology after a delete

operation to determine the impact of

3-56

deletion to the rest of the software

especially if any global variable is

involved.

Substitution: Since substitution involves both an addition

and a deletion, the retest methodology must

be used to determine the impact of the

substitution on the program's control

structure as well as its logic structure. - 4

Therefore, the test case cross reference

matrix and the set/use matrices may need to

be updated.

6. Alternative structural analysis options.

There are different methods that can be used to analyze the

structure of a computer program. A computer program can be

viewed as a set of executable statements, DD-paths,

modules, or even system components. The retest methodology

is flexible enough to be able to function with any option

chosen by the maintainer. In this research, the DD-path

option was chosen because of its compatibility with

existing Air Force software.

7. Multi DD-path modification.

If modifications to more than one DD-path are made, a

logical OR should be performed among the rows of the

reachability matrix corresponding to the modified DD-path.

This procedure should likewise be performed on the

appropriate columns ok the reachability matrix. The

results of these operations can be used to computc the

right hand side (b.'s) of the 0-1 integer programming

model.

3-57

SECTION 4 - CONCLUSION

The validation of software modifications is important

during both the development and the operations and maintenance

phases of the software life cycle, yet a review of the software

literature shows that little research has been reported in this

area. This report is one of the pioneer efforts in this area,

and the results reported here show promising potential for both

additional theoretical research and practical applications.

The objective of this research was to investigate the

feasibility of quantitative retest methods by defining

alternative retest strategies, measuring their performance

characteristics, and identifying implementation techniques.

The defined retest strategies are:

1. Rerun all previously used test cases.

2. Retest all testable paths through the changed code.

3. Rerun all test cases which execute the changed code.

4. Retest all DD-paths reachable from the changed code.

5. Retest all DD-paths reaching to or reachable from the

changed code.

6. Retest all DD-paths reaching to the changed code and S

setting changed data, and reached from the changed

code and using changed data.

Though strategy 2 was shown to be impractical, techniques were

developed to implement each remaining strategy. Implementation 0

techniques for strategies 1 and 3 were limited to a test

execution history, while implementation techniques for

strategies 4, 5, and 6 were developed using more sophisticated

static analysis techniques. For these strategies, the logical

structure of the source code was transformed into a directed

graph and the graph analyzed in terms of each strategy. The

optimization technique of 0-1 integer programming was then

applied to minimize the amount of retesting within the

constraints inherent in each strategy.

4-1

This research has extended the state-of-the-art in software

technology by:

1. Defining alternative retest strategies.

2. Building a framework for making retest decisions using

a directed graph representation of the target software.

3. Applying 0-1 integer programming to the retest problem

to optimize the retest solution. 0

4. Defining algorithms to identify data dependencies

within a software module.

5. Identifying the steps necessary to automate the

implementation of these techniques.

Though these advances in software technology are

significant, they provide additional research opportunities in

several interesting areas:

1. Additional retest strategies could be investigated

which provide more reliable testing and/or reduced

implementation ccst.

2. Test data could be collected from sample programs and

several of the six alternative retest strategies run

to validate the performance and practicality of the

methodology.

3. Software quality uld be investigated using this

model. For example, one measure of maintainability

may be the number of tests cases necessary to

revalidate a software modification. One could measure

the performance of structured versus unstructured

programs to determine the effect of program structure

on maintainability.

4. The use of 0-1 integer programming could be enhanced

by identifying further data reduction techniques or

more efficient implementation algorithms given the

structural properties of the retest model.

4-2

SW

This research forms a solid foundation both for future

research and for easing some traditional burdens of maintaining

complex software systems. Implementation of retest strategy

models has been demonstrated to be feasible, and tools for-

structuring automated retest systems have been identified.

Therefore, this work can be a springboard for achieving

immediate practical benefits, because the disorder of retesting

software is not an inherent property, but rather stems from the 4

typical failure of software specialists to apply the same

degree of systemization to the validation of software

modifications as they do to initial system validation.

4-3

7D-R123 636 SOFTMRRE RETEST TECHIQUES(U)
COPUTER SCIENCES CORP

2/2
FLLS CHURCH VA K FSCHER ET AL. OCT 82 RRDC-TR-82-275U LhS F386;82-81-C-089

uNCLhiSSIFIED F/G 9/2 NLIlllllIllllI
IIIEEIIIIIIII
IIIIIIIIIIIIII

L6 2 12.0

11111!2 LA'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

SECTION 5 -RECOMMENDATIONS

DoD software acquisitions are characterized by a number of

attributes, which even after twenty years of trying to solve,

S still plague acquisition managers. One of these attributes is 7 I

that the maintenance of software systems usually is more costly

than their original development. This attribute is valid for

both ADP and embedded computer systems. Some of the problems

frequently encountered by managers of software maintenance r-
activities are:

1. Inadequate planning.

2. Shortage of qualified personnel.
r v

3. Lack of available tools and techniques.

4. Poor documentation.

5. Software not developed with maintainability in mind.

It is the purpose of this section to describe a proposed

solution to the third problem identified above.

Though the Air Force has recognized the need for software

maintenance environments (e.g., the Electronic Warfare Avionics U

Integration Support Facility, the F-111 Integration Support

* Facility, and the NORAD Off-site Test Facility), the technical

personnel working within these support facilities have no

guidance in the form of quantitative techniques or tools on how U

to retest their modified software.

Under this contract, CSC, has performed the following tasks:

I. CSC investigated existing retesting techniques and p

methodologies by performing a literature review and

conducting on-site surveys. We found no quantitative

methods that had been actually employed, and only one

quantitative method (1) for which a preliminary

technique was specified.

r 4

5-1

2. Based on this preliminary technique, CSC developed and

described advanced techniques which could be automated

to enhance existing Air Force software retesting

methods. We developed six candidate retest

strategies, several of which were based on a directed

graph representation of the target computer program

. and used zero-one integer programming to minimize the

amount of retesting such that all affected program

elements were retested at least once. A cost-benefit

analysis showed that one strategy was far superior to

the others. This strategy was to rerun the minimum

number of test cases such that all program components

(e.g., DD-paths) reaching to and setting the changed

variables and reached from and using the changed

variables were tested.

3. Based on this strategy, a Functional Description

document was prepared which identified and described

each functional element of an automated software

retest system to implement the aforementioned strategy.

During this contract, CSC has developed an excellent

methodology for providing a cost effective reduction in the

maintenance cost of both ADP and embedded computer software.

The methodology is too complex to perform manually, and the

data management too cumbersome, tedious, and error-prone.

Therefore, in order to effectively implement the methodology,

an automated Software Retesting System (SRS) should be

developed. Such a system has already been functionally

1. Fischer, K. F., "A Test Case Selection Method for the

Validation of Software Maintenance Modifications,"

Proceedings, COMPSAC '77, IEEE, November 1977, pp. 421-426.

V 5

5-2

speci fied i n the Software Retesting System Functional

Description document, and promises to be an extremely low risk

effort.

To effectively satisfy the Air Force's software retesting

objectives in its many varied environments, our SRS has been

designed to be source language independent and highly portable

from one host to another. As described in our Functional

Description, the SRS consists of four functional components: -

1. Retest Front-End - This component will provide the

interface to the host operating environment and is the

only SRS component that will require modification when

moving from one host to another. -

2. Command Organizer - This component provides the user

interface and validates and invokes all user

commands.

03. Retest Analyzer - This component performs the

necessary analysis to determine the specific t 7'.t

-* cases to rerun which efficiently and reliably validate

a given modification.

4. Data Base - This component indexes, stores, retrieves,

and updates the necessary tables required by the

Retest Analyzer.

Once the SRS is implemented and validated, CSC feels that
two important steps are necessary for its acceptance by users:

1) its thorough demonstration in a real project environment,

and 2) its incorporation into an integrated program'ming

4 environment such as the J73 programming environment developed

for RADC by CSC (under contract F30602-79-C-0051) or the Ada

Integrated Environment. These last two steps are critical for

system acceptance. The first step will lend credibility to the

entire methodology, without which, System Program offices will

*not require its use. The second step is important for

technical users who will more readily accept the system if it

5-3

W

is embedded within their current development environment, .

rather than having to go to another operational environment.

We find the estimated cost for the SRS to be surprisingly

reasonable. Based upon our estimate of 46,800 lines of code,

the estimated level of effort for the necessary implementation -

steps is as follows:

Activity Estimated Level of Effort

Study and analysis 10 man months "

Specification 10 man months

Implementation 30 man months

Test 12 man months

System Installation 8 man months -

Demonstration 30 man months

Total 100 man months

Based on the comments we received during our survey of Air .

Force operational and support sites, the demand for a retest

tool is extremely high, and the benefits are extremely

worthwhile:

1. A reliable assessment of retesting effort for each

modification.

2. A tool to transfer machine readable knowledge from the

development environment to the maintenance environment.

3. A tool that will identify an insufficient test bed.

4. A tool to aid in the creation of new test cases.

3. A tool to identify sufficient retesting for a given

software modification.

4. A methodology against which a standard can be applied.

Based on these benefits, we can only conclude that the

implementation of the Software Retest System has low technical

risk, is extremely cost effective, and highly beneficial to the

Air Force.

5-4

APPENDIX A

Data Dependency Analysis Algorithm A

This algorithm is used to evaluate the set/use matrix to

determine DD-paths which reach to the modified DD-paths and

affect the modification.

Step 1. Set up a row array with the number of elements equal

to the number of DD-paths in the target program. Set . S

the value of each element to zero.

Step 2. Set up a column array with the number of elements

equal to the number of variables in the target

program. Set the value of each element to zero.

Step 3. Set the value of the element in the row array

corresponding to the modified DD-path to 1.

Step 4. Scan the column of the set/use matrix corresponding to V

the modified DD-path, and determine the row (variable)

that is being used (denoted by a "U" or an "X" in that

column). In the column array, set the value of the

element corresponding to the used variable to 1.

Step 5. If an element in the column array is set to 1, scan

its corresponding row in the set/use matrix and set

the corresponding element in the row array to 1 if

that variable is set in any DD-path (denoted by a "S"

or an "X" in that row). If no elements of the column

array are set to 1, go to step 8.

Step 6. For each element of the row array set to 1 in step 5,

scan the corresponding columns in the set-use matrix

to identify what variables are used by those DD-paths

(denoted by a "U" or an "X" in those columns) and set

the corresponding element of the column array to 1.

* If no elements of the row array are set to 1, go to

step 8.

Step 7. Go to step 5.

Step 1. Stop.

A-1

APPENDIX B

Data Dependency Analysis Algorithm B

This algorithm is used to evaluate the set/use matrix to

determine DD-paths which reach from the modified DD-paths and

affect the modification.

Step 1. Set up a row array with the number of elements equal

to the number of DD-paths in the target program. Set - 0

the value of each element to zero.

Step 2. Set up a column array with the number of elements

equal to the number of variables in the target

program. Set the value of each element to zero.

Step 3. Set the value of the element in the row array

corresponding to the modified DD-path to 1.

Step 4. Scan the column of the set/use matrix corresponding to W

the modified DD-path, and determine the row (variable)

that is being set (denoted by an "S" or an "X" in that

column). In the column array, set the value of the

element corresponding to the set variable to 1. V

Step 5. If an element in the column array is set to 1, scan

its corresponding row in the set/use matrix and set

the corresponding element in the row array to 1 if

that variable is used in any DD-path (denoted by a "U"

or an "X" in that row) . If no elements of the column

array are set to 1, go to step 8.
Step 6. For each element of the row array set to 1 in step 5,

scan the corresponding columns in the set-use matrix

to identify what variables are set by those DD-paths

(denoted by an "S" or an "X" in those columns) and set

the corresponding element of the column array to 1.

If no elements of the row array are set to 1, go to

step 8.

Step 7. Go to step 5.

Step 8. Stop.

B-I

APPENDIX C

BIBLOGRAPHY

1. Alford, M.W., "Software Requirements Engineering
Methodology (SREM), " Proceedings, Second U.S. Army -

Software Symposium, Williamsburg, Virginia, October 25-27,
1978, pp. 221-234.

2. Allen, F.E. and J. Cocke, "A Program Data Flow Analysis
Procedure, " Communications of ACM, Vol. 19, No. 3 (1976),
pp. 137-147. S

3. Belady, L.A. and M.M. Lehman, "A Model of Large Program
Development," IBM Systems Journal, No. 3, 1976, pp. 225-252.

4. Boehm, B.W., "Software and Its Impact: A Quantitative
Assessment," Datamation, Vol. 19, No. 5 (1973), pp. 48-59. ..

5. Boehm, B.W., "Software Engineering," IEEE Trans. on
Computers, Vol. C-25, No. 12, December 1976, pp. 1226-1242.

6. Brown, J.R. and K.F. Fischer, "A Graph Theoretic Approach
to the Verification of Program Structures," Proceedin
Third International Conference on Software Engineering,
IEEE Catalog No. 78CH1317-7C, May 1978.

7. Brown, J.R. and M. Lipow, "Testing For Software
Reliability," Proceedings, International Conference on

Reliable Software, IEEE Catalog No. 75CH1317-7CSR, April 3
1975, pp. 518-527.

8. Bucher, D.E.W., "Maintenance of the Computer Sciences
Teleprocessing System," Proceedings, International

Conference on Reliable Software, IEEE Catalog No. 75CH0940,
April 1975, pp. 260-266.

9. Canning, R.G., "That Maintenance Iceberg," EDP Analyzer,
Vol. 10, No. 10 (1972), pp. 1-14.

10. Carey, L.J., Qualifier User's Manual, Computer Software
Ar'&ysts, Inc., 1974.

11. Christofides, N., Graph Theory: An Algorithmic Approach,
Academic Press, 1975.

12. Clarke, L., "A System To Generate Test Data and
Symbolically Execute Programs," Dept. of Computer Science,
University of Colorado, Report No. CU-CS-060-75, February
1975.

13. Daly, E. B., "Management of Software Development," IEEE
Transactions on Software Engineering, Vol. SE-3, No. 2
(1977), pp. 229-242.

C-1

p -

14. Deb, R. K., "On Generation of Test Data and Minimal Cover
of Directed Graphs," Proceedings of Information Processing
77, IFIP Congress, Toronto, 1977, pp. 13-16.

15. Donahoo, J. D. and D. Swearingen, "A Review of Software
Maintenance Technology", RADC-TR-80-13, Rome Air
Development Center, Griffiss AFB, NY, February 1980.

16. Fischer, K. F., The FORTRAN Code Auditor, Quality Assurance
Software Tools User's Guide, TRW Software Product
Assurance, STP-6039, January 1977.

17. Fischer, K. F., "A Test Case Selection Method for the
Validation of Software Maintenance Modifications,"
Proceedings, COMPSAC '77, IEEE, November 1977, pp. 421-426.

18. Fischer, K. F., "The IOVAR Program," Quality Assurance
Software Tools User's Guide, TRW Software Product
Assurance, STP-6039, January 1977.

19. Fischer, K.F., "The Product Assurance Confidence Evaluator
(PACE), Quality Assurance Software Tools User's Guide, TRW
Software Product Assurance, STP-6039, January 1977.

20. Fischer, K.R., "Test Predictor-State of the Program

Report," TRW Report 75-6910.05-1079, November 18, 1975.

21. Fosdick, L.D. and L.J. Osterweil, "DAVE - A Fortran Program
Analysis System," Proceedings, Computer Science and
Statistics: Eighth Anual Symposium on the Interface,
Health Sciences Computing Facility, UCLA, February 1975, 6
pp. 329-335.

22. Gannon, C., "Error Detection Using Path Testing and
Statistic Analysis," IEEE Transactions on Computer,
August, 1979.

23. Gannon, C. and R. F. Else, "JOVIAL J73 Automated
Verification System User's Manual," General Research
Corporation, July 1981.

24. Garfinkel, R. and G.L. Nemhauser, Integer Programming, John
Wiley and Sons, Inc., 1972.

25. Gloss-Soler, S.A., The DACS Glossary - A Bibliography of
Software Engineering Terms, Rome Air Development Center,
Data and Analysis Center for Software, GLOS-I, October 1979.

26. Gibson, C.G. and L.R. Railing, "Verification Guidelines,"
TRW Software Series #71-04, August 1971.

27. Harary, F., Graph Theory, Addison - Wesley, 1971.

C-2

U V

28. Hecht, M.S. and J.D. UlIman, "Analysis of a Simple
Algorithm for Global Data Flow Problems," Proceedings, ACM
Symposium on Principles of Programming Languages, 1973, pp.
207-217.

29. Hecht, M.S. and J.D. Ullman, "Graph Flow Reducibility,"
SIAM Journal of Computing, Vol. 1, No. 2 (1972),
pp. 188-202.

30. Henley, E.J. and R.A. Williams, Graph Theory in Modern
Engineering, Academic Press, 1973.

31. Hoffman, R.H., "NASA/Johnson Space Center Approach to
Automated Test Data Generation," Proceedings, Computer
Science and Statistics: Eighth Annual Symposium on the
Interface, Health Sciences Computing Facility, UCLA,
February 1975, pp. 336-341.

32. Hoffman, R. H., "The Impossible Pairs Detection Capability
(IMPAIR) of the Automated Test Data Generator (ATDG),"
NASA, Contract No. NAS9-14853, Houston, Texas, January 14,
1977.

33. Howden, W.E., "Methodology for the Generation of Program
Test Data," IEEE Transaction on Computers, Vol. C-24, No. 5
(1975), pp. 554-559.

34. Howden, W.E., "Theoretical and Empirical Studies of Program
Testing", University of Victoria, Victoria, Canada.

U

35. Huang, J.C., "An Approach to Program Testing," Computing
Surveys, Vol. 7, No. 3 (1975), pp. 113-128.

36. King, J.C., "A New Approach to Program Testing,"
Proceedings International Conference on Reliable Software,
IEEE Catalog No. 75CH0940-7CSR, April 1975, pp. 228-233.

37. Krause, K.W., R.W. Smith and M.A. Goodwin, "Optimal
Software Test Planning Through Automated Network Analysis,"
Record, 1973, IEEE Symposium on Computer Software
Reliability, New York, 1973, pp. 18-22.

38. Lientz, B.P. and E.B. Swanson, "Software Maintenance a
User/Management Tog-of-War", Data Management, Vol. 17, No.
4 (1979), pp. 26-30.

39. Lientz, B.P., E.B. Swanson and G.E. Tompkins,
"Characteristics of Application Software Maintenance,"
Comm. ACM, Vol. 21, No. 7, (1978).

40. Lindhorst, M.W., "Scheduled Maintenance of Applications
Software," Datamation, Vol. 19, No. 5, (1973), pp. 64-67.

C-3

. "Applications of Algebraic Methods to Computer
S"Analysis, TRW Software Series No. 73-10, May 1973.

,, M., "Some Directed Graph Methods for Analyzing

] uter Program," Proceedings, Computer Sciences and
, >tistics: Eighth Annual--SfymrposTum on the'interface,

-alth Sciences Computing Facility, UCLA, February 1975.

Liu, C.C., "A Look at Software Maintenance," Datamation,
Vol. 22, No. 11, (1976), pp. 51-55.

44. Lloyd, D. K. and M. Lipow, Reliability: Management,
Methods, and Mathematics, published by the authors, Redondo * *
Beach, California, 1977, pp 525-527.

45. Maitlen, R.L., "SURVAYOR - the Set-Use of Routine Variables
Analysis Program," Applied Software Laboratory, TRW DSSG,
1975.

46. Marimont, R. B., "Applications of Graphs and Boolean
Matrices to Computer Programming," SIAM Review, Vol. 2, No.
4 (1960) , pp. 259-268.

47. Martin, D. E. and G. Estrin, "Path Length Computations on
Graph Models of Coimputations," IEEE Transactions on "
Computers, Vol. C-18, No. 6 (1969), pp. 530-536.

48. McMillan Jr., C., Mathematical Programming: An
Introduction to the Design and Application of Optimal
Decision Machines, John Wiley and Sons, Inc., 1970. 0

49. Miller, R.E., "Program Testing Technology in 1980's,"
Proceedings of the Conference on Computing in the 1980's,
IEEE, 1978.

50. Miller, E.F., RXVP: An Automated Verification System for
FORTRAN, General Research Corp, Santa Barbara, CA, January fop
1975.

51. Mooney, J.W., "Organized Program Maintenance," Datamation,
Vol. 21, No. 2 (1975), pp. 63-64.

52. Nelson, E.C., "A Statistical Basis for Software Reliability U S

Assessment," TRW Software Series No 73-03, March 1973.

53. Ntafos, S.C. and S.L. Hakimi, "On Path Problems in
Diagraphs and Application to Program Testing; IEEE

Transaction on Software Engineering, Vol. SE5, No. 5,
September 1979. P U

C-4

S

54. Popkin, G.S. and M.L. Shooman, "On the Number of Tests
Necessary to Verify a Computer Program:, Rome Air
Development Center, RADC-TR-78-229, Griffiss AFB, NY,
November 1978.

55. Paige, M.R. "On Partitioning Program Graph", IEEE
Transaction on Software Engineering, Vol SE-3, No. 6,
November 1977.

56. Prosser, R.T., "Applications of Boolean Matrices to the
Analysis of Flow Diagrams," Proceedings of the Eastern
Joint Computer Conference, 1959, pp. 133-138.

57. Roy, B., "An Algorithm for a General Constrained Set
Covering Problem," in Graph Theory and Computing, ed. by
R.C. Reed, Academic Press, 1972.

58. Shooman, M.L. and H. Ruston, "Summary of Technical Pro(ss

Investigation of Software Models," Rome Air Develol nt
Center, RADC-TR-79-188, Griffiss AFB, NY.

59. Shneiderman, B., Software Psychology Human Factor
Computer and Information Systems, Winthrop Publisher I
1980, p. 44.

60. Sloan, N.J.A., "On Finding the Paths Through a Network,"
The Bell System Technical Journal, Vol. 51, No. 2 (1972),
pp. 371-390.

61. Stucki, L.G., "Tools Lessons Learned-New Strategies,"
McDonnell Douglas Astronautics Company, Huntington Beach,
California.

62. Swanson, E.B., "The Dimensions of Maintenance,"
Proceedings, Second International Conference on Software
Engineering, IEEE Catalog 76CH1125-4C, October 1976, pp.
492-497.

63. Taha, H.A., An Introduction to Operations Research, The
MacMillan Company, 1971.

64. Tai, K., "Program Testing Complexity and Test Criteria,"
IEEE Transaction on Software Engineering, Vol. SE-6, No. 6,
November 1980.

65. Teichroew, D., "ISDOS and Recent Extensions," Proceedings
of the Symposium on Computer Software Engineering,
Polytechnic Press (176), p. 79.

66. Voges, U., Gmeiner, and Amscher, "SADAT, an Automated
Testing Tool", IEEE Transaction on Software Engineering,
Vol. SE-6, No. 3, May 1980, pp. 286-290.

C-5

W

66. Warshall, S., "A Theorem on Boolean Matrices," Journal of -
ACM, Vol. 9, No. 1 (1962), pp. 11-12.

67. Yau, S.S., and J.S. Collofello, Performance Considerations
in the Maintenance Phase of Large-Scale Software System,
Rome Air Development Center, RADC-TR-79-129, Griffiss Air
Force Base, N.Y., June 1979.

68. Yau, S.S. and J. Collofello, "Some Stability Measures for
Software Maintenance," IEEE Transaction Software
Engineering, Vol. SE-6, No. 6, November 1980.

69. Report to the Congress of the United States, "Federal
Agencies' Maintenance of Computer Program: Expensive and
Undermanaged", February of 1981.

C-6

6

* S

* i 6

APPENDIX D -

This appendix contains a technical paper describing the

retest methodology developed under this contract. The 0

technical paper entitled, "A Retest Methodology for Modified

Software," was presented at the National Telecommunications

Conference '81 and was published in the conference

proceedings. The National Telecommunications Conference '81 -*

was sponsored by the Institute of Electrical and Electronic

Engineers and Bell Laboratories.

D-1

A RETEST METHODOLOGY FOR MODIFIED SOFTWARE

ABSTRA

This paper describes a methodology for software retesting

that leads to the development of tools which will decrease the

high cost associated with current maintenance practices, as

well as increase the reliability of modifications made to a

software systems. Frequent modification of user requirements

and/or the continuous repair of observed program errors have

made the maintenance phase of the software life cycle one of

the most important and often the most expensive. A major

concern during this phase is the potential proliferation of

errors throughout the system caused by the modification of

programs. The lack of available tools and techniques forces

most software maintainers to use ad hoc retesting methods which

provide little, if any, quantitative information as to their

test sufficiency.

I. INTRODUCTION*

The development of computer software usually goes through

an evolutionary life cycle beginning with the establishment of

an operational requirement and ending with the deployment and

operation of the software system. In the past, short cuts have

been taken on many software projects during the early life

cycle phases in order to get a product into the field quickly.

This situation normally leads to decreased reliability and

extremely expensive subsequent modifications during the

maintenance phase. Unfortunately, most software systems take

this path causing frequent modifications and updates. One

problem area in the maintenance phase, called retest, arises

* This work was supported by the U.S. Air Force Rome Air

Development Center under contract F30602-81-C-0089.

D-2

* w

when attempting to revalidate the system due to code

modifications or code additions. Retest is the act of

rerunning certain tests to verify a change to an existing

system. It differs from the test activity, which is concerned

with planning and executing tests that initially validate the

entire software system. Retest answers the following questions:

o For any given modification, what other section(s) of the --

software is impacted by that modification?

0 For the identified section(s) of code that could be

affected, what test cases should be rerun to assure the

proper execution of existing capability?

The decision of what to retest and how thoroughly to do so

is a major problem for software managers and researchers and

has not yet been adequately resolved. in research, little
work has been done in the area of retest methodologies [1)

The purist will demand that all previously used test cases be

rerun. The pragmatist will leave the decision to the

discretion of the test director as he believes the test

director knows the software best, and by using engineering

judgment and his knowledge of the code he often manually

selects the subset of previously completed test cases to be

rerun. Other retest methods may be: to rerun a number of

randomly selected test cases; to rerun all test cases that
execute the modified code; or to execute a new set of test

cases that exercise all the program's major capabilities to

give the user "confidence" (though not statistically) that the

software operates properly [21.

Each method has some beneficial attributes, yet none gives

a completely reliable solution. Rerunning all previously used

test cases is almost always impractical as validation tests for
large computer programs may number in the hundreds. The test

director may be able to select for retest those tests that

address the functional modifications, but he may not be aware

0 4P

D-3

P

that modif ied data conditions could cause execution of

non-functional paths resulting in inaccurate computation that

may go undetected for years. What is needed is a quantitative

method for assuring that new program modifications do not

introduce new errors into the code. To prove this would

require an analysis of every program path, but this has been

formally shown to be a difficult task in all but the most

trivial cases. Though the need for retesting can arise during

both the testing phases of development and the operations and

maintenance phase [21, this paper will discuss retest only in

the cont'-t of the operations and maintenance phase since more

life cycle costs are spent in this phase rather than in the

testing phase.

Section II of this paper presents an overview of the

methodology. An example of applying the methodology is

presented in Section III. Section IV discusses data dependency.

II. OVERVIEW

Since changes in data or logic conditions can affect code

in remote locations, one concern is the global communication

between system modules. This communication is accomplished via

global variables shared by modules. Modification of a module

within a software system could affect other modules if they use

the same global variables as the modified module. To determine

the relationship between modules and global variables, a global

variable set/use matrix is employed to monitor and record usage

of global variables within the software system. The set/use
* relationships between modules and global variables are defined 0

below:

0 A variable is defined to be "set" if its value is changed

* (e.g., the variable A is set in the statement A=5, A=X+Y).

* This is represented by the letter "S" in the global

variable set/use matrix.

0 A variable is defined to be "used" if it is accessed and

its value is used during the process (e.g., variables B and

D-4

- U-

C are used in the statement A=B+C). This is represented by

the letter "U" in the global variable set/use matrix.

o A variable is defined to be both "set and used" if its

value is set and used in a statement (e.g., A=A+l);

represented in the matrix by the letter "X".

At the module level, the focus is on structural elements

called segments and the interrelationship of segments within a

module. A segment is defined as a continuous sequence of

executable statements with only one entry point at the

beginning and one exit point at the end. By executing the

first statement in any segment, all other statements in that

segment are also executed [2]. The retest methodology employs

knowledge of the reachability among segments. The reachability

matrix (shown later) identifies, for each segment, all the

other segments that can reach to it or be reached from it

(either directly or indirectly). Two other matrices of

importance are the module level set/use matrix which identifies

the status of all local variables, global variables, and

arguments within modules and the test case cross reference

matrix which identifies what segments are tested by each test

case. Both of these matrices are further discussed in

subsequent sections of this paper.

The selection of the optimal subset of test cases is

accomplished by using the 0-1 integer programming technique

with data provided by the reachability, set/use, and test case

cross reference matrices. The following is an abstract

formulation of the 0-1 integer programming model [4] consisting

of minimizing the function.

Z = clX 1 + c 2X 2 ... + cnXn
subject to the following constraints
allXl + al 2X 2 ... + alnXn > bl
a21X1 + a2 2X 2 ... + a2nXn > b 2

amlXl + am2X2 + ... + amnXn > bm
Xj = 0 or 1

D-5

where c. is the cost element for running each test case

(which we assume is one.) , a. is an element of the constraint

* coefficient matrix, and b. is the lower bound of each
I

constraint row i. The variable for solution, X., corresponds
tojth test case in the test case crossrernc maix

* and n are the number of segments and number of test cases

* associated with each module, respectively. The constraint

coefficient matrix (a. .j) is taken directly from the test case

cross reference matrix, and the right hand side (b.i) is taken

* from the logical OR of the applicable rows and columns of the

reachability matrix corresponding to the modified segment. The

* exact procedure is explained via example in the next section.

From the solution of this model, the value of the objective

function Z will give the minimum number of test cases necessary

to assure full retest coverage, and the values of X. that are

equal to one will identify the specific test cases which form

the optimal retest subset.

111. EXAMPLE MODEL FORMULATION

Retest methodology views a software module as a directed

graph where each node is a segment and the arcs represent

connectivity between segments. The directed graph for the

module used as an example in this section is shown in Figure 1.

2 3

6

9

Figure 1. Directed Graph Presentation of a Module

D- 6

Associated with each module is a connectivity matrix and a

reachability matrix. The connectivity between the segments in

Figure 1 is shown in the connectivity matrix in Figure 2.

Whenever segment i is connected to segment j, the connectivity

matrix element (i,j) is 1; 0 otherwise. The reachability

matrix, which is the transitive closure of the connectivity

matrix, depicts the reachability of segments from each other

[5]. If a segment can reach another segment in the module,

directly or indirectly, element (i,j) of the reachability

matrix is 1; 0 otherwise. For purposes of this research we

assume every segment reaches itself, and therefore all elements

of the main diagonal are set to 1. Figure 3 illustrates the

reachability matrix respectively based on the directed graph

representation of the module shown in Figure 1.

TO
123456789

1 011000000

2 000001000

3 000110000

4 000010000

FROM 5 0 0 0 0 0 1 0 0 0

6 000000110

7 000000001

8 000000001

9 000000000

Figure 2. Connectivity Matrix

D-7

. - .. . i
°

- h

TO

1 111111111 8

2 01 00 01 11 1

3 00 11 11 11 1

4 00 01 11 11 1

FROM 5 0 0 0 0 1 1 1 1 1

6 00 00 0 111 1

8 0 000 00 01 1

9 00 00 00 00 1

Figure 3. Reachability Matrix

Additionally, a test case cross reference matrix is

associated with each module. This matrix is constructed by

* identifying segments executed by test cases during the testing

phase of software development. If any element (i, j) of the

test case cross reference matrix is 1, segment i is executed by

test case j; 0 otherwise. For example, in Figure 4, test case

1 exercises segments 1, 2, 6, 7 and 9 of the example module.

Column 2 through 6 of the test case cross reference matrix

correspond to the other test cases used.

Test Cases

Segments 1 2 3 4 5 6

2 1 1 0 0 0 0

*3 0 0 1 1 1 1

4 0 0 0 0 1 1

5 0 0 1 1 1 1

6 1 1 1 1 1 1

7 1 0 1 0 1 0

8 0 1 0 1 0 1

9 1 1 1 1 1 1

Figure 4. Test Case Cross Reference Matrix

D8

Let us assume that the module contains three variables: X,

Y, and Z represented by the set/use matrix in Figure 5.

Segments
Variables 1 2 3 4 5 6 7 8 9 ..

X S U U U U S
Y S S U U S
z U S S

where:
S: variable i set in segment j
U: variable i used in segment j
X: variable i set and used in segment j

Figure 5. Module Set/Use Matrix.

In this example, we assume a change to segment 2 is made.

The following analysis should be performed to select the test

cases for retest. The nine constraint expressions (i.e., one

for each segment), corresponding to rows of the test case cross

reference matrix, serve to assure that at least one test case

* executes every segment that is reached from or reaches to the

modified segment. The right hand values (bi's) are the

result of a logical OR operation performed between the row and

column of the reachability matrix associated with modified

segment (in this case row and column two) . The outcome is

incorporated into the 0-1 integer programming model as the

right hand side (b i's) values.

MINIMIZE Z = X1 + X2 + X3 + X4 + X5 + X6

SUBJECT TO XI+ X2+ X3+ X4+ X5+ X6 _
SBCTO1 2 3 4 5 6

X 1+ x 2 >

X X3+ X 4+ X 5+ X 6 > 0

XS5+ X 6 > 0

X 3+ X 4+ Xs5+ X 6 > 0

Xl1+ X 2+ X 3+ X 4+ X 5+ X 6 > 1

X I+ x 3+ x 5 > I

x 2+ x 4+ x 6 > 1
q XI + X 2+ X 3+ X 4+ X 5+ X 6 > I1

Figure 6. 0-1 integer Programming model

D-9

" " u im ' m m |> 1

This model can be reduced by several reduction methods [2,4].

Minimize Z = X 1 + X2

Subject to X1 + X>2 1

X + X >1
1 2

SX2> 1

X21

x + x>1

After the reduction process, redundant constraints may appear

and may be removed as shown in this example. The final model

formulation reduces to:

Minimize Z =X 1 + X2
Subject to X1 > 1

Solution of this example shows that both X and X

equal 1 and the optimal value of the objective function is 2.

This means that there are two test cases to be rerun and that

they are test cases 1 and 2.

TV. DATA DEPENDENCY

In the previous section, the methodology selected test

cases based solely on a module's logic structure. However,

analysis of data dependency can be performed to further reduce

the number of test cases selected for retest. Previously the

global variable and module level set/use matrices were briefly

mentioned, however, it is now necessary to fully describe their

purposes and utilization. The module set/use matrix reflects

the status of each global variable, parameter, argument, and

local variable. Global variables are included in the matrix to

facilitate the identification of segments in which the global

variables are used. Arguments are included for invocation of

those modules whose arguments change during the modification.

The set/use matrix serves two purposes. First, it can reduce
S

the number of selected test cases associated with the module in

D-10

S 0

which the modification was made. Secondly, it identifies test

cases that need to be rerun as a result of modification to

other modules. The following two examples illustrate each

purpose and utilization of the set/use matrix.

Analysis of the module set/use matrix can be used to reduce

the number of selected test cases. This analysis is performed

by using the algorithms described in Appendices A and B to

identify segments in which the data elements can affect or be

affected by the modification. Algorithm A is used to determine
all segments containing data elements which potentially affect

data conditions used in the modified segment. Algorithm B is

used to determine all segments containing data elements whichW

are potentially affected by data conditions set by the modified

segment. in this example, the first step is to use the

algorithm described in Appendix A. A logical AND is then

* performed between the result of the algorithm and column two

(since segment 2 is modified) of the reachability matrix. This

identifies the segments which reach to and affect the

modification of segment two. Figure 6 illustrates this

analysis.

*Column two of reachability matrix 1 1 0 0 0 0 0 0 0

Result of the Algorithm A 11 00 00 00 0

Logical AND

Data/logic dependencies

reaching to modified segment 1 1 0 0 0 0 0 0 0

(T)

Figure 7 . Logical AND Operation

The second step is to identify segments reached from the

*modified segment and data elements affected by the 1

modification. The analysis proceeds in the same manner, except

the logical AND is performed between the result of the

algorithm described in Appendix B and the second row of the

D-11

reachability matrix. Figure 8, demonstrates the logical AND

operation to determine the segments affected by and reached

from the modified segment.

Row two of the reachability

matrix 010 00 1 11 1

Result of the algorithm B 0 1 0 0 0 1 1 1 0

Logical AND _________

0 1 0 0 0 1 1 1 0 (II)

Figure 8. Logical AND Process

* Finally, a logical OR between the result of step one and

-*the result of step two is performed to identify the final b is

used in the 0-1 integer programming model. Figure 8

illustrates this logical OR operation.

Step one results (1) 1 1 0 0 0 0 0 0 0 4

*Step two results (11) 0 1 0 0 0 1 1 1 0

Logical OR_________

Final b k's 1 1 0 0 0 1 1 1 0

Figure 9. Logical OR Operation

The next example illustrates the use of the set/use matrix

to identify test cases that need to be rerun as a result of

modification to a remote module. Suppose a segment in another

* module is modified and this modification affects a global1

variable which has been used in a segment of the example

module. The effects of this modification are reflected in the

global. variable set/use matrix. By scanning the global

variable set/use matrix, the modules which use the modified

global variable can be identified. For example, as shown in

D-12

Figure 10, if global variable A is modified in module 1, then

modules 2 and 4 are also identified for further analysis. once

the modules affected by the remote modification are identified,

r each individual module must be analyzed to determine the

specific segments within the module which are affected by the

remote modi fication. This identi fication of segments is

accomplished via the module set/uise matrix because it maps

w variables (global, local, arguments, etc.) in a module to the

segments of the module. Since segments affected by the remote

modification are identified, the procedure for selecting test

cases to be retested is the same as the procedure described in

example 1.lo

Modules

Global Variables ml m2 m3 m4 m5

*A S U U U

B S U U

C U U

Figure 10. Global Variable Set/Use Matrix

V. CONCLUSION

Software Retesting is important during both the development

phase and the operations and maintenance phase of the software

life cycle. However, a review of the software literature shows

* that little research has been reported in this area.

This paper has presented a feasible methodology for

retesting modified software based on rerunning previously used

* test cases.

4 In addition, this research has extended the state-of-the-art in

software technology by:

1. Building a framework for making retest decisions using a

directed graph representation of the target software

I

D-1 3

W

2. Applying 0-1 integer programming to the retest problem to

optimize the retest solution

3. Defining an algorithm to identify data dependencies within

a software module. -

Though these advances in software engineering technology

are significant, they provide additional research opportunities

in several interesting areas. Additional retest strategies

should be investigated in order to provide both more reliable ".

and more cost efficient testing procedures. Software quality

shouid also be investigated using this model. For example, one

measure of maintainability may be the number of test cases

necessary to revalidate a software modification. One should S

also measure the performance of structured versus unstructured

programs to determine the effect of program structure on

maintainability. Current research is investigating the cost

* and effectiveness of several retest strategies against both a W

recently employed ad hoc method and the testing limit of

rerunning all tests. Preliminary results show that performing

a data dependency analysis can significantly reduce the number

of tests needed to be rerun, while maintaining high confidence

that the software is being adequately retested.

D 1

* 5

D-14

S S,

APPENDIX A

An Algorithm for the evaluation of the set/use Matrix to

determine segments which reach to the modified segment and

affect the modification.

*1. Set up a row array with the number of elements equal to the

number of segments in the target program. Set the value of

each element to zero.

*2. Set up a column array with the number of elements equal to

the number of variables in the target program. Set the

value of each element to zero.

3. Set the value of the element in the row array corresponding

to the modified segment to 1.

4. Scan the column of the set/use table corresponding to the

0 modified segment, and determine the row (variable) that is

being used (denoted by an "U" or an "X" in that column)

In the column array,, set the value of the element

corresponding to the used variable to 1.

5. if an element in the column array is set to 1, scan its

corresponding row in the set/use table and set the

corresponding element in the row array to 1 if that

variable is set in any segments (denoted by a "S" or and

"II in that row) . If no elements of the column array are

set to 1, go to step 8.

6. For each element of the row array set to 1 in step 5, scan

d the corresponding columns in the set-use table to identify 0
what variables are used by those segments (denoted by a "U"

or an "X" in those columns) and set the corresponding

elements of the column array to 1. if no elements of the

row array are set to 1, go to step 8.

7. Go to step 5.

8. stop.

D-15

APPENDIX B

An Algorithm for the evaluation of set and use Matrix to

determine segments reached from the modified segment and are

affected by the modification.

1. Set up a row array with the number of elements equal to the

number of segments in the target program. Set the value of

each element to zero.

2. Set up a column array with the number of elements equal to

the number of variables in the target program. Set the

value of each element to zero.

3. Set the value of the element in the row array corresponding

to the modified segment to 1.

4. Scan the column of the set/use table corresponding to the

modified segment, and determine the row (variable) that is

being set (denoted by an "S" or an "X" in that column) . In

the column array,, set the value of the element

corresponding to the set variable to 1.

5. If an element in the column array is set to 1, scan its
corresponding row in the set/use table and set the

corresponding element in the row array to 1 if that

variable is used in any segments (denoted by a "U" or and
11XV in that row) .If no elements of the column array are

set to 1, go to step 8.

6. For each element of the row array set to 1 in step 5, scan

* the corresponding columns in the set-use table to identify

* what variables are set by those segments (denoted by an "5""

or an "X" in those columns) and set the corresponding

element of the column array to 1. If no elements of the

40 row array are set to 1, go to step 8.

7. Go to step 5.

8. Stop.

D-16

- -

REFERENCES

[1] Gibson, C. G., and L. R. Railing, Verification Guidelines,

TRW Document 17618-H200-RO-00, prepared for NASA/JSC under

contract NAS 9-8166 August 1971.

[21 Fischer K. F., "A Test Case Selection Method for the

Validation of Software Maintenance Modification", Proceedings,

COMPSAC '77, IEEE, Nov. 1977.

[31 Warshall, S., "A Theorem on Boolean Matricies", Journal of

ACM, IX, 1, January 1962.

[4] Davis, R. E. , D. A. Kendrik, and Weitzman,

Branch-and-Bound Algorithm for Zero and One Integer Programming

Problems", Operation Research, Vol. 19 (1971), pp. 1036-1044. r

[51 Allenson, R. E., et.al., Automated Verification System

Programmer's Guide, TRW Systems, Note No. 72 FMT.

p D

F3

~D-17

e S

-II

APPENDIX E

This appendix contains the source code for the data

statement module used as an example in Section 3. The function

of this module is to perform syntax analyses on data assignment

statements written in program design language.

IE

!V

E-1

!V

tiliv 1 tdrL - -
16t~h l 00 !c o r.C)u o I (*l3si.cm;)
kw.4340 !CotF0poo. (,c c .ct c D g,,) ;
00 k4 ,O !cu Pool (*Pdxtrl.cmV);
*w 4 f.WtJ conpoo I ('Cracnst.cip');

0bovi,' 'cumpOOl (puJerts.cmp');
V 0b.,

1 :co.riuoi "cstler.ci' csJVuerid'ot'tile;
007.1i, jet Pioc cdlddta (:ret'code);

0 hi$1

* i2b,,' 15.

V)13l 0 M1 iuii /)AIlL -W 11fr, : t" 14li / 4ovevoer k9, 198.
0,t4w ,; 'A 'uLIiFl"CAIIJ. ALIUI k(S5) / bALl:
J 5wt.' t I* M dlIk tC JI Jdnuar1y 9. 196i. '

tll1b.,'0 t(, AuMt..aS:
o17,% b taken: (liut/autout) cndracter. Sequence ot characters '
1, 1e,: t, to oe processed. '
wiIoo '4 toien'code: (input/output) inte4er. representation ot token type. '
,120,,0 'i ret~code: tlnput/output) lnteler. Status error code. '
021Ito t PAkH.Nl MUDULE: none. '
loe t 16 1LXILhNAL MUUULLS: '

V)2 00 %4 pJiscan: 1o provide tokens from source tile;
0 e0%' P paserver: l'o provide error messajes and earnings. '4
25ov, I GLObAL DATA STRUCTUWES: '

o22bk) % ind: intejer, external, indicates level of indentation. '
0270J 4 Odtault: external boolean to Indicates existence ot data blocK.

b69) itote: All dove varicoles are Defined in "Pdlexterls" compool.
* d29w,' Y6 FUNCtIONAL NARHATIVE: '4
03odi w kecoQnIzes tne syntax o d data olock and its matching end. '
d310 t Since the Intormation In the data blOCK does not follow any specified
c320 % syntax, and the type of lecldratton varies, tnis module eliminates ' U
iJtle a tne entire blocK. Tne only statement tnat is recognized bY '4
03440t this module is "end data;". The P1I syntax ot the data block IS: '
w '3be e data fdeclardtions and comments> end data; '
• 3o 4o '

.41 1, eq±'.
o4tv, !copy "pocls.173'; tinclude declaration o± pdlscan, Pdlexo. pdlserver
V43,' iteni tida u;
0144-1d It rdE60it Z true;
045o uPilserver (iataexist);
0 4 t)-A-) in'11 = ±rIJ + 1;

* o47V, t- false;
,4t1,', hrilettl aj = tdise);

#49 utqir,
')bo. ii to' coie Z enas;

l5 1,4 o te I I ,
10 . .")f IT.; -1 1 -1
0 5 3,),. oi v scar, (: ret cOlP o P
1'54.,d I I LOcuue dit ;
S,5 '.), ,. te Ji I •

,5.', 11s clsIrets (: cu le e
it takcflie sepi;

else paisprver (sebx"lssJ);

E-2

0 boio 0tldg true;
Ob I 10en J
ooded ie if toncode =sepi;

0 b4r~ 01Pdlserver (ddt~iniss1);
0 b jfoo D1scan%.:ret'coiej;

O2bb)vl' tIdQ =true;
0000 ~ end
V"bH4O1 else pdlscan (:ret'c~de);

ob900 eni % If toKCode =end %
IA*16,40 eise ndiscdn(:ret'coje);

w071o.A it ret coie =Csdt*endotftile

0,1300 dlserver (eni'ssqJ
io 7 e) otlaj true;

*0 ft5viO end
0 li~btu etia A aniie

Li7b~v end '~pd~adta I
v,19oo term

E - 3

P

APPENDIX F

GLOSSARY

The following terms and definitions pertinent to this

document are described below. Acronyms are defined in

Appendix G.

Automated Verification System (AVS) -

A software tool that performs both static and dynamic

analysis to aid in the testing and verification of .

computer programs.

Branch -

A branch (or Decision-to-Decision path) is the ordered -

sequence of statements the program performs as a

result of the outcome of a decision up until the

evaluation of the predicate in the next decision

statement encountered. Figure 1-1 provides a diagram -

of a branch.

Connectivity Matrix

An NxN matrix where N equals the number of program

elements (such as decision-to-decision paths) , and

where any (i,j) element is denoted on the matrix by a

1 if program element i transfers directly to program

element j. If program element i does not transfer

directly to program element j, then element (i,j) is

denoted by a 0. This matrix may also be known as an

incidence matrix or an adjacency matrix.

Data Dependency- U 1

The logical connectivity or relationship of data

elements within a program.

p F

F-I

P

FROM PREVIOUS
BRANCH

SELECT
PREDICATE
OUTCOME --"0

ALTERNATIVE ALTERNATIVE
OUTCOME OUTCOME

EXECUTE BRANCH "

SEQUENCE
OF NON-

DECISION
STATE M ENTS

DECISION
STATEMENT:
EVALUATE
PREDICATE

PREDICATE

OUTCOME

*7Th
Figure 1-1. Diagram of a Branch(l)

1. C. Gannon, JOVIAL J73 Automated Verification System- Study

Phase, prepared by General Research Corporation, Rome Air

Development Center, TR-80-261, August 1980.

F-2

Decision-to-Decision Path (DD-path) -

See definition for "Branch".

Directed Graph -

A special type of mathematical graph characterized by

each branch having a specified direction between its

connecting nodes and having one or more identified

entry points and one or more identified exit points.

Dynamic Analysis -

A debugging or testing technique used to evaluate a

program based on its execution. The program is

executed with data, the program output, and any

additional execution-time reports, and is analyzed for

conformity to functional or structural performance

specifications.

Global Set/Use Matrix -

An NxM matrix which identifies global variables used

and set within each module of a software program

(where N represents the number of global variables and

M represents the number of modules in the program).

Loop -

A unique sequence of one or more nodes defined on a

graph in which the terminal node of the sequence is

equal to the initial node of the sequence.

Mathematical Graph -

* A collection of points (or nodes) xl, x2, ...,

xn denoted by the set X, and a collection of arcs

al, a2 , ... , an denoted by the set A joining

some or all of the nodes. Therefore, a graph is fully

described and denoted by (X,A).

F-

F- 3

I'

Module -

A logically self-contained and discrete part of a

computer program. In JOVIAL J73, a module is the

smallest entity that can be separately compiled.

Path-

A unique sequence of one or more program elements

defined on a graph beginning with an entry point and "0
ending with an exit point. A continuous sequence of

control flow (branches) between two points in a

program (usually between a program unit's entry and

exit). A

Program -

A collection of statements that can be assembled or

compiled and can be executed as a single entity.

Program Element -

A unit within the hierarchy of software components,

such as a routine, procedure, DD-path (branch),

module, or statement. A DD-path is the program g

element most commonly used in this document.

Reachability Matrix -

An NxN matrix where N equals the number of program

elements and where any (i,j) position is represented

on the matrix by a 1 if program element j can be

reached either directly or indirectly from program

element i. If program element j cannot be reached 0

either directly or indirectly from program element i,

then position (i,j) is represented by a 0.

Retest -

The act of rerunning certain tests to verify that a

change in one area of the existing software does not

create data and or logic conditions that could affect

the proper execution of another area.

F-4

*Segments lis

A contiguous sequence of executable statements with

one entry point at the beginning and one exit point at

the end. By executing the first statement in any

segment, all other statements in that segment are also

executed.

Set-

A term used to describe a data dependency that occurs

when a value is placed into a variable's storage

location. An example of a statement where the

variable X is "set" is: X=5.

Set and Use-

A term used to describe a data dependency in which a

variable is both set and used in the same statement.

An example of a statement in which the variable X is-

both "set and used" is: X=X+l.

Set/Use Table -

A table used to analyze the flow of data (data

dependency) within a program. This table has size NxM

where N equals the number of variables (data elements)

and M equals the number of executable statements in

the module. Data within the table represents whether

or not a particular variable is used, set, or both set

and used indicated by a IUO, "5S", or "IX", respectively.

Statement-

*A unit of a computer program consisting of a

meaningful arrangement of basic language elements

which expresses a unified instruction or information,

analoqons to a sentence in English (1).

1. Gloss-Soler, S.A., The DACS Glossary - A Bibliography

of Software Engineering Terms, Rome Air Development

Center, Data Analysis Center for Software, GLOSS-l,

October 1979.

F-5

Static Analysis-

A program analysis technique which does not actually

execute the program using input data. The technique

is usually employed to detect inconsistencies in

semantics or in asserted versus actual conditions.

Testbed -

The set of testcases developed or modified during the

various levels of testing to validate a computer

program or computer program component.

Test Case Cross Reference Matrix -

A matrix used to identify the OD-paths of a programV

that are exercised by any given test case. It is a

boolean matrix with a 1 in any (i,j) position if

DD-path i is executed by test case j; otherwise it is

represented by a 0.

Transitive Closure -

A mathematical technique used to derive the

reachability matrix from the connectivity matrix by

finding the sum of a sufficiently large number of

powers of the connectivity matrix where all additions

and multiplications are Boolean.

Use -

A term used to describe a data dependency that occurs

when the storage location of a variable is accessed,

the contents read, and the value used in comparing or

computing some other value. An example of a FORTRAN

executable statement where the variable Y is "used"

is: X=Y*2.

*7

F-6

6-

APPENDIX G - ACRONYMS

CSC Computer Sciences Corporation

DoD Department of Defense

IMPAIR Impossible Transfer Pairs Detection Capability

RADC Rome Air Development Center

SREM Software Requirements Engineering Methodology -

SRS Software Retest System

G

* U.

U

V

G-I

MISSION
Of

Rome Air Development Center
RAVC p~an6 and executeA keoeAch, devetopment, te45t and
Aetected acqui.6ition ptog~awn in zuppo.tt o6 Command, Con-tot

*Comunication.6 and Intettigence (C31) activ.LtieA. Technicat
and engineeing .6UPPO~t Within aAea,6 oj technZc.. competence
i.6 pkovided to ESP~ Pu.gu'.m O66icez (PO.) and otheAt ESV
etement6. The p't.ZnciZpat technicat mi6.6on atea4 a'te
commi~cation8, elettomagttetic guidance and contwZ, ~Sw,-
veit2tance o4 gkwund and ae~o.6pace object5, intet.&gence data
cottection and handting, indouno.4ion .6y6tem technotogy,
icono4phec pupagation, zotid ztate .6cienceA, micAot&ve
physic,6 and etectAonZc 4etiabitity, maintiabiztyj and
cornpatikbf.Lty.

* '

.71

I

I

